ﻻ يوجد ملخص باللغة العربية
Alongside the well-publicized accomplishments of deep neural networks there has emerged an apparent bug in their success on tasks such as object recognition: with deep models trained using vanilla methods, input images can be slightly corrupted in order to modify output predictions, even when these corruptions are practically invisible. This apparent lack of robustness has led researchers to propose methods that can help to prevent an adversary from having such capabilities. The state-of-the-art approaches have incorporated the robustness requirement into the loss function, and the training process involves taking stochastic gradient descent steps not using original inputs but on adversarially-corrupted ones. In this paper we propose a multiclass boosting framework to ensure adversarial robustness. Boosting algorithms are generally well-suited for adversarial scenarios, as they were classically designed to satisfy a minimax guarantee. We provide a theoretical foundation for this methodology and describe conditions under which robustness can be achieved given a weak training oracle. We show empirically that adversarially-robust multiclass boosting not only outperforms the state-of-the-art methods, it does so at a fraction of the training time.
Training convolutional neural networks (CNNs) with a strict Lipschitz constraint under the l_{2} norm is useful for provable adversarial robustness, interpretable gradients and stable training. While 1-Lipschitz CNNs can be designed by enforcing a 1-
Deep model compression has been extensively studied, and state-of-the-art methods can now achieve high compression ratios with minimal accuracy loss. This paper studies model compression through a different lens: could we compress models without hurt
Recent studies have shown that deep neural networks (DNNs) are highly vulnerable to adversarial attacks, including evasion and backdoor (poisoning) attacks. On the defense side, there have been intensive interests in both empirical and provable robus
Discrete adversarial attacks are symbolic perturbations to a language input that preserve the output label but lead to a prediction error. While such attacks have been extensively explored for the purpose of evaluating model robustness, their utility
We analyze the properties of adversarial training for learning adversarially robust halfspaces in the presence of agnostic label noise. Denoting $mathsf{OPT}_{p,r}$ as the best robust classification error achieved by a halfspace that is robust to per