ﻻ يوجد ملخص باللغة العربية
We use a combination of observational data in order to reconstruct the free function of f(T) gravity in a model-independent manner. Starting from the data-driven determined dark-energy equation-of-state parameter we are able to reconstruct the f(T) form. The obtained function is consistent with the standard {Lambda}CDM cosmology within 1{sigma} confidence level, however the best-fit value experiences oscillatory features. We parametrise it with a sinusoidal function with only one extra parameter comparing to {Lambda}CDM paradigm, which is a small oscillatory deviation from it, close to the best-fit curve, and inside the 1{sigma} reconstructed region. Similar oscillatory dark-energy scenarios are known to be in good agreement with observational data, nevertheless this is the first time that such a behavior is proposed for f(T) gravity. Finally, since the reconstruction procedure is completely model-independent, the obtained data-driven reconstructed f(T) form could release the tensions between {Lambda}CDM estimations and local measurements, such as the H0 and {sigma}8 ones.
We show that the f(T) gravitational paradigm, in which gravity is described by an arbitrary function of the torsion scalar, can provide a mechanism for realizing bouncing cosmologies, thereby avoiding the Big Bang singularity. After constructing the
We investigate the cosmological perturbations in f(T) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbien, we extract the corresponding dispersion relation, which provides a constraint on the f(T) an
We present a detailed analysis of the impact of $H_0$ priors from recent surveys in the literature on the late time cosmology of five $f(T)$ cosmological models using cosmic chronometers, the Pantheon data set, and baryonic acoustic oscillation data.
We consider a scenario of modified gravity, which is generic to late-time acceleration, namely, acceleration in the Jordan frame and no acceleration in the Einstein frame. The possibility is realized by assuming an interaction between dark matter and
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newtons potential given by $f(R)$ gravity. We compute the corrected $N$-particle partition function analy