ﻻ يوجد ملخص باللغة العربية
The main result of the present paper concerns finiteness properties of Floer theoretic invariants on affine log Calabi-Yau varieties $X$. Namely, we show that: (a) the degree zero symplectic cohomology $SH^0(X)$ is finitely generated and is a filtered deformation of a certain algebra defined combinatorially in terms of a compactifying divisor $mathbf{D}.$ (b) For any Lagrangian branes $L_0, L_1$, the wrapped Floer groups $WF^*(L_0,L_1)$ are finitely generated modules over $SH^0(X).$ We then describe applications of this result to mirror symmetry, the first of which is an ``automatic generation criterion for the wrapped Fukaya category $mathcal{W}(X)$. We also show that, in the case where $X$ is maximally degenerate and admits a ``homological section, $mathcal{W}(X)$ gives a categorical crepant resolution of the potentially singular variety $operatorname{Spec}(SH^0(X))$. This provides a link between the intrinsic mirror symmetry program of Gross and Siebert and the categorical birational geometry program initiated by Bondal-Orlov and Kuznetsov.
We discuss homological mirror symmetry for the conifold from the point of view of the Strominger-Yau-Zaslow conjecture.
Consider a Maslov zero Lagrangian submanifold diffeomorphic to a Lie group on which an anti-symplectic involution acts by the inverse map of the group. We show that the Fukaya $A_infty$ endomorphism algebra of such a Lagrangian is quasi-isomorphic to
This is an expository article on the A-side of Kontsevichs Homological Mirror Symmetry conjecture. We give first a self-contained study of $A_infty$-categories and their homological algebra, and later restrict to Fukaya categories, with particular em
We analyze the locus, together with multiplicities, of bad conformal field theories in the compactified moduli space of N=(2,2) superconformal field theories in the context of the generalization of the Batyrev mirror construction using the gauged lin
The first goal of the present paper is to study the class groups of the edge rings of complete multipartite graphs, denoted by $Bbbk[K_{r_1,ldots,r_n}]$, where $1 leq r_1 leq cdots leq r_n$. More concretely, we prove that the class group of $Bbbk[K_{