ﻻ يوجد ملخص باللغة العربية
The data-aware method of distributions (DA-MD) is a low-dimension data assimilation procedure to forecast the behavior of dynamical systems described by differential equations. It combines sequential Bayesian update with the MD, such that the former utilizes available observations while the latter propagates the (joint) probability distribution of the uncertain system state(s). The core of DA-MD is the minimization of a distance between an observation and a prediction in distributional terms, with prior and posterior distributions constrained on a statistical manifold defined by the MD. We leverage the information-geometric properties of the statistical manifold to reduce predictive uncertainty via data assimilation. Specifically, we exploit the information geometric structures induced by two discrepancy metrics, the Kullback-Leibler divergence and the Wasserstein distance, which explicitly yield natural gradient descent. To further accelerate optimization, we build a deep neural network as a surrogate model for the MD that enables automatic differentiation. The manifolds geometry is quantified without sampling, yielding an accurate approximation of the gradient descent direction. Our numerical experiments demonstrate that accounting for the information-geometry of the manifold significantly reduces the computational cost of data assimilation by facilitating the calculation of gradients and by reducing the number of required iterations. Both storage needs and computational cost depend on the dimensionality of a statistical manifold, which is typically small by MD construction. When convergence is achieved, the Kullback-Leibler and $L_2$ Wasserstein metrics have similar performances, with the former being more sensitive to poor choices of the prior.
We present a geometrical method for analyzing sequential estimating procedures. It is based on the design principle of the second-order efficient sequential estimation provided in Okamoto, Amari and Takeuchi (1991). By introducing a dual conformal cu
We extend Hoeffdings lemma to general-state-space and not necessarily reversible Markov chains. Let ${X_i}_{i ge 1}$ be a stationary Markov chain with invariant measure $pi$ and absolute spectral gap $1-lambda$, where $lambda$ is defined as the opera
We develop a physics-informed machine learning approach for large-scale data assimilation and parameter estimation and apply it for estimating transmissivity and hydraulic head in the two-dimensional steady-state subsurface flow model of the Hanford
This paper considers distributed statistical inference for general symmetric statistics %that encompasses the U-statistics and the M-estimators in the context of massive data where the data can be stored at multiple platforms in different locations.
Results by van der Vaart (1991) from semi-parametric statistics about the existence of a non-zero Fisher information are reviewed in an infinite-dimensional non-linear Gaussian regression setting. Information-theoretically optimal inference on aspect