ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface detectors of the TAx4 experiment

114   0   0.0 ( 0 )
 نشر من قبل Eiji Kido
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Telescope Array (TA) is the largest ultrahigh energy cosmic-ray (UHECR) observatory in the Northern Hemisphere. It explores the origin of UHECRs by measuring their energy spectrum, arrival-direction distribution, and mass composition using a surface detector (SD) array covering approximately 700 km$^2$ and fluorescence detector (FD) stations. TA has found evidence for a cluster of cosmic rays with energies greater than 57 EeV. In order to confirm this evidence with more data, it is necessary to increase the data collection rate.We have begun building an expansion of TA that we call TAx4. In this paper, we explain the motivation, design, technical features, and expected performance of the TAx4 SD. We also present TAx4s current status and examples of the data that have already been collected.



قيم البحث

اقرأ أيضاً

80 - M. Kozai , H. Fuke , M. Yamada 2018
We have developed large-area lithium-drifted silicon (Si(Li)) detectors to meet the unique requirements of the General Antiparticle Spectrometer (GAPS) experiment. GAPS is an Antarctic balloon-borne mission scheduled for the first flight in late 2020 . The GAPS experiment aims to survey low-energy cosmic-ray antinuclei, particularly antideuterons, which are recognized as essentially background-free signals from dark matter annihilation or decay. The GAPS Si(Li) detector design is a thickness of 2.5 mm, diameter of 10 cm and 8 readout strips. The energy resolution of <4 keV (FWHM) for 20 to 100 keV X-rays at temperature of -35 to -45 C, far above the liquid nitrogen temperatures frequently used to achieve fine energy resolution, is required. We developed a high-quality Si crystal and Li-evaporation, diffusion and drift methods to form a uniform Li-drifted layer. Guard ring structure and optimal etching of the surface are confirmed to suppress the leakage current, which is a main source of noise. We found a thin un-drifted layer retained on the p-side effectively suppresses the leakage current. By these developments, we succeeded in developing the GAPS Si(Li) detector. As the ultimate GAPS instrument will require >1000 10-cm diameter Si(Li) detectors to achieve high sensitivity to rare antideuteron events, high-yield production is also a key factor for the success of the GAPS mission.
We designed, fabricated, and characterized four arrays of horn--coupled, lumped element kinetic inductance detectors (LEKIDs), optimized to work in the spectral bands of the balloon-borne OLIMPO experiment. OLIMPO is a 2.6 m aperture telescope, aimed at spectroscopic measurements of the Sunyaev-Zeldovich (SZ) effect. OLIMPO will also validate the LEKID technology in a representative space environment. The corrected focal plane is filled with diffraction limited horn-coupled KID arrays, with 19, 37, 23, 41 active pixels respectively at 150, 250, 350, and 460$:$GHz. Here we report on the full electrical and optical characterization performed on these detector arrays before the flight. In a dark laboratory cryostat, we measured the resonator electrical parameters, such as the quality factors and the electrical responsivities, at a base temperature of 300$:$mK. The measured average resonator $Q$s are 1.7$times{10^4}$, 7.0$times{10^4}$, 1.0$times{10^4}$, and 1.0$times{10^4}$ for the 150, 250, 350, and 460$:$GHz arrays, respectively. The average electrical phase responsivities on resonance are 1.4$:$rad/pW, 1.5$:$rad/pW, 2.1$:$rad/pW, and 2.1$:$rad/pW; the electrical noise equivalent powers are 45$:rm{aW/sqrt{Hz}}$, 160$:rm{aW/sqrt{Hz}}$, 80$:rm{aW/sqrt{Hz}}$, and 140$:rm{aW/sqrt{Hz}}$, at 12 Hz. In the OLIMPO cryostat, we measured the optical properties, such as the noise equivalent temperatures (NET) and the spectral responses. The measured NET$_{rm RJ}$s are $200:murm{Ksqrt{s}}$, $240:murm{Ksqrt{s}}$, $240:murm{Ksqrt{s}}$, and $:340murm{Ksqrt{s}}$, at 12 Hz; under 78, 88, 92, and 90 mK Rayleigh-Jeans blackbody load changes respectively for the 150, 250, 350, and 460 GHz arrays. The spectral responses were characterized with the OLIMPO differential Fourier transform spectrometer (DFTS) up to THz frequencies, with a resolution of 1.8 GHz.
A Si(Li) detector fabrication procedure has been developed with the aim of satisfying the unique requirements of the GAPS (General Antiparticle Spectrometer) experiment. Si(Li) detectors are particularly well-suited to the GAPS detection scheme, in w hich several planes of detectors act as the target to slow and capture an incoming antiparticle into an exotic atom, as well as the spectrometer and tracker to measure the resulting decay X-rays and annihilation products. These detectors must provide the absorption depth, energy resolution, tracking efficiency, and active area necessary for this technique, all within the significant temperature, power, and cost constraints of an Antarctic long-duration balloon flight. We report here on the fabrication and performance of prototype 2-diameter, 1-1.25 mm-thick, single-strip Si(Li) detectors that provide the necessary X-ray energy resolution of $sim$4 keV for a cost per unit area that is far below that of previously-acquired commercial detectors. This fabrication procedure is currently being optimized for the 4-diameter, 2.5 mm-thick, multi-strip geometry that will be used for the GAPS flight detectors.
Large ultra-sensitive detector arrays are needed for present and future observatories for far infra-red, submillimeter wave (THz), and millimeter wave astronomy. With increasing array size, it is increasingly important to control stray radiation insi de the detector chips themselves, the surface wave. We demonstrate this effect with focal plane arrays of 880 lens-antenna coupled Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field measurements of the MKID optical response versus the position on the array of a reimaged optical source. We demonstrate that the optical response of a detector in these arrays saturates off-pixel at the $sim-30$ dB level compared to the peak pixel response. The result is that the power detected from a point source at the pixel position is almost identical to the stray response integrated over the chip area. With such a contribution, it would be impossible to measure extended sources, while the point source sensitivity is degraded due to an increase of the stray loading. However, we show that by incorporating an on-chip stray light absorber, the surface wave contribution is reduced by a factor $>$10. With the on-chip stray light absorber the point source response is close to simulations down to the $sim-35$ dB level, the simulation based on an ideal Gaussian illumination of the optics. In addition, as a crosscheck we show that the extended source response of a single pixel in the array with the absorbing grid is in agreement with the integral of the point source measurements.
408 - E. Del Monte 2014
During the three years long assessment phase of the LOFT mission, candidate to the M3 launch opportunity of the ESA Cosmic Vision programme, we estimated and measured the radiation damage of the silicon drift detectors (SDDs) of the satellite instrum entation. In particular, we irradiated the detectors with protons (of 0.8 and 11 MeV energy) to study the increment of leakage current and the variation of the charge collection efficiency produced by the displacement damage, and we bombarded the detectors with hypervelocity dust grains to measure the effect of the debris impacts. In this paper we describe the measurements and discuss the results in the context of the LOFT mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا