ترغب بنشر مسار تعليمي؟ اضغط هنا

Using contrastive learning to improve the performance of steganalysis schemes

247   0   0.0 ( 0 )
 نشر من قبل Yiwen Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To improve the detection accuracy and generalization of steganalysis, this paper proposes the Steganalysis Contrastive Framework (SCF) based on contrastive learning. The SCF improves the feature representation of steganalysis by maximizing the distance between features of samples of different categories and minimizing the distance between features of samples of the same category. To decrease the computing complexity of the contrastive loss in supervised learning, we design a novel Steganalysis Contrastive Loss (StegCL) based on the equivalence and transitivity of similarity. The StegCL eliminates the redundant computing in the existing contrastive loss. The experimental results show that the SCF improves the generalization and detection accuracy of existing steganalysis DNNs, and the maximum promotion is 2% and 3% respectively. Without decreasing the detection accuracy, the training time of using the StegCL is 10% of that of using the contrastive loss in supervised learning.



قيم البحث

اقرأ أيضاً

Over the past few years the Angry Birds AI competition has been held in an attempt to develop intelligent agents that can successfully and efficiently solve levels for the video game Angry Birds. Many different agents and strategies have been develop ed to solve the complex and challenging physical reasoning problems associated with such a game. However none of these agents attempt one of the key strategies which humans employ to solve Angry Birds levels, which is restarting levels. Restarting is important in Angry Birds because sometimes the level is no longer solvable or some given shot made has little to no benefit towards the ultimate goal of the game. This paper proposes a framework and experimental evaluation for when to restart levels in Angry Birds. We demonstrate that restarting is a viable strategy to improve agent performance in many cases.
148 - Susheel Suresh , Pan Li , Cong Hao 2021
Self-supervised learning of graph neural networks (GNN) is in great need because of the widespread label scarcity issue in real-world graph/network data. Graph contrastive learning (GCL), by training GNNs to maximize the correspondence between the re presentations of the same graph in its different augmented forms, may yield robust and transferable GNNs even without using labels. However, GNNs trained by traditional GCL often risk capturing redundant graph features and thus may be brittle and provide sub-par performance in downstream tasks. Here, we propose a novel principle, termed adversarial-GCL (AD-GCL), which enables GNNs to avoid capturing redundant information during the training by optimizing adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical explanations and design a practical instantiation based on trainable edge-dropping graph augmentation. We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to $14%$ in unsupervised, $6%$ in transfer, and $3%$ in semi-supervised learning settings overall with 18 different benchmark datasets for the tasks of molecule property regression and classification, and social network classification.
Acoustic-to-word (A2W) models that allow direct mapping from acoustic signals to word sequences are an appealing approach to end-to-end automatic speech recognition due to their simplicity. However, prior works have shown that modelling A2W typically encounters issues of data sparsity that prevent training such a model directly. So far, pre-training initialization is the only approach proposed to deal with this issue. In this work, we propose to build a shared neural network and optimize A2W and conventional hybrid models in a multi-task manner. Our results show that training an A2W model is much more stable with our multi-task model without pre-training initialization, and results in a significant improvement compared to a baseline model. Experiments also reveal that the performance of a hybrid acoustic model can be further improved when jointly training with a sequence-level optimization criterion such as acoustic-to-word.
Abstract symbolic reasoning, as required in domains such as mathematics and logic, is a key component of human intelligence. Solvers for these domains have important applications, especially to computer-assisted education. But learning to solve symbo lic problems is challenging for machine learning algorithms. Existing models either learn from human solutions or use hand-engineered features, making them expensive to apply in new domains. In this paper, we instead consider symbolic domains as simple environments where states and actions are given as unstructured text, and binary rewards indicate whether a problem is solved. This flexible setup makes it easy to specify new domains, but search and planning become challenging. We introduce four environments inspired by the Mathematics Common Core Curriculum, and observe that existing Reinforcement Learning baselines perform poorly. We then present a novel learning algorithm, Contrastive Policy Learning (ConPoLe) that explicitly optimizes the InfoNCE loss, which lower bounds the mutual information between the current state and next states that continue on a path to the solution. ConPoLe successfully solves all four domains. Moreover, problem representations learned by ConPoLe enable accurate prediction of the categories of problems in a real mathematics curriculum. Our results suggest new directions for reinforcement learning in symbolic domains, as well as applications to mathematics education.
The goal of text-to-image synthesis is to generate a visually realistic image that matches a given text description. In practice, the captions annotated by humans for the same image have large variance in terms of contents and the choice of words. Th e linguistic discrepancy between the captions of the identical image leads to the synthetic images deviating from the ground truth. To address this issue, we propose a contrastive learning approach to improve the quality and enhance the semantic consistency of synthetic images. In the pre-training stage, we utilize the contrastive learning approach to learn the consistent textual representations for the captions corresponding to the same image. Furthermore, in the following stage of GAN training, we employ the contrastive learning method to enhance the consistency between the generated images from the captions related to the same image. We evaluate our approach over two popular text-to-image synthesis models, AttnGAN and DM-GAN, on datasets CUB and COCO, respectively. Experimental results have shown that our approach can effectively improve the quality of synthetic images in terms of three metrics: IS, FID and R-precision. Especially, on the challenging COCO dataset, our approach boosts the FID significantly by 29.60% over AttnGAn and by 21.96% over DM-GAN.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا