ﻻ يوجد ملخص باللغة العربية
Topology effects have being extensively studied and confirmed in strongly correlated condensed matter physics. In the large color number limit of QCD, baryons can be regarded as topological objects -- skyrmions -- and the baryonic matter can be regarded as a skyrmion matter. We review in this paper the generalized effective field theory for dense compact-star matter constructed with the robust inputs obtained from the skyrmion approach to dense nuclear matter, relying to possible ``emergent scale and local flavor symmetries at high density. All nuclear matter properties from the saturation density $n_0$ up to several times $n_0$ can be fairly well described. A uniquely novel -- and unorthdox -- feature of this theory is the precocious appearance of the pseudo-conformal sound velocity $v^2_{s}/c^2 approx 1/3$, with the non-vanishing trace of the energy momentum tensor of the system. The topology change encoded in the density scaling of low energy constants is interpreted as the quark-hadron continuity in the sense of Cheshire Cat Principle (CCP) at density $gsim 2n_0$ in accessing massive compact stars. We confront the approach with the data from GW170817 and GW190425.
Exploiting certain robust topological inputs from the skyrmion description of compressed baryonic matter with a scale-chiral symmetric Lagrangian, we predict the equation of state that is consistent with the properties of nuclear matter at the equili
We review the recent exploration of a possible domain-wall structure of compressed baryonic matter in massive compact stars in terms of fractional quantum Hall droplets and skyrmions for baryons in medium. The theoretical framework is anchored on an
Entanglement suppression in the strong interaction $S$-matrix is shown to be correlated with approximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner $SU(4)$ symmetry for two flavors and an $SU(16)$ symmetry
The half-skyrmions that appear in dense baryonic matter when skyrmions are put on crystals modify drastically hadron properties in dense medium and affect strongly the nuclear tensor forces, thereby influencing the equation of state (EoS) of dense nu
We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which