ﻻ يوجد ملخص باللغة العربية
We consider approaches for causal semantics of Petri nets, explicitly representing dependencies between transition occurrences. For one-safe nets or condition/event-systems, the notion of process as defined by Carl Adam Petri provides a notion of a run of a system where causal dependencies are reflected in terms of a partial order. A well-known problem is how to generalise this notion for nets where places may carry several tokens. Goltz and Reisig have defined such a generalisation by distinguishing tokens according to their causal history. However, this so-called individual token interpretation is often considered too detailed. A number of approaches have tackled the problem of defining a more abstract notion of process, thereby obtaining a so-called collective token interpretation. Here we give a short overview on these attempts and then identify a subclass of Petri nets, called structural conflict nets, where the interplay between conflict and concurrency due to token multiplicity does not occur. For this subclass, we define abstract processes as equivalence classes of Goltz-Reisig processes. We justify this approach by showing that we obtain exactly one maximal abstract process if and only if the underlying net is conflict-free with respect to a canonical notion of conflict.
We prove that $omega$-languages of (non-deterministic) Petri nets and $omega$-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of $omega$-languages of (non-determinist
We show that there are $Sigma_3^0$-complete languages of infinite words accepted by non-deterministic Petri nets with Buchi acceptance condition, or equivalently by Buchi blind counter automata. This shows that omega-languages accepted by non-determi
In the early two-thousands, Recursive Petri nets have been introduced in order to model distributed planning of multi-agent systems for which counters and recursivity were necessary. Although Recursive Petri nets strictly extend Petri nets and contex
We develop a polynomial translation from finite control pi-calculus processes to safe low-level Petri nets. To our knowledge, this is the first such translation. It is natural in that there is a close correspondence between the control flows, enjoys
The categorical modeling of Petri nets has received much attention recently. The Dialectica construction has also had its fair share of attention. We revisit the use of the Dialectica construction as a categorical model for Petri nets generalizing th