ﻻ يوجد ملخص باللغة العربية
With the renaissance of neural networks, object detection has slowly shifted from a bottom-up recognition problem to a top-down approach. Best in class algorithms enumerate a near-complete list of objects and classify each into object/not object. In this paper, we show that strong performance can still be achieved using a bottom-up approach for vision-based object recognition tasks and achieve competitive video game play. We propose PuckNet, which is used to detect four extreme points (top, left, bottom, and right-most points) and one center point of objects using a fully convolutional neural network. Object detection is then a purely keypoint-based appearance estimation problem, without implicit feature learning or region classification. The method proposed herein performs on-par with the best in class region-based detection methods, with a bounding box AP of 36.4% on COCO test-dev. In addition, the extreme points estimated directly resolve into a rectangular object mask, with a COCO Mask AP of 17.6%, outperforming the Mask AP of vanilla bounding boxes. Guided segmentation of extreme points further improves this to 32.1% Mask AP. We applied the PuckNet vision system to the SuperTuxKart video game to test its capacity to achieve competitive play in dynamic and co-operative multiplayer environments.
We consider the task of learning a classifier for semantic segmentation using weak supervision in the form of image labels which specify the object classes present in the image. Our method uses deep convolutional neural networks (CNNs) and adopts an
Robust automated organ segmentation is a prerequisite for computer-aided diagnosis (CAD), quantitative imaging analysis and surgical assistance. For high-variability organs such as the pancreas, previous approaches report undesirably low accuracies.
The image-to-GPS verification problem asks whether a given image is taken at a claimed GPS location. In this paper, we treat it as an image verification problem -- whether a query image is taken at the same place as a reference image retrieved at the
In this work, we introduce Panoptic-DeepLab, a simple, strong, and fast system for panoptic segmentation, aiming to establish a solid baseline for bottom-up methods that can achieve comparable performance of two-stage methods while yielding fast infe
In this review, we examine the recent progress in saliency prediction and proposed several avenues for future research. In spite of tremendous efforts and huge progress, there is still room for improvement in terms finer-grained analysis of deep sali