ﻻ يوجد ملخص باللغة العربية
With the aim of integrating over-the-air federated learning (AirFL) and non-orthogonal multiple access (NOMA) into an on-demand universal framework, this paper proposes a novel reconfigurable intelligent surface (RIS)-aided hybrid network by leveraging the RIS to flexibly adjust the signal processing order of heterogeneous data. The objective of this work is to maximize the achievable hybrid rate by jointly optimizing the transmit power, controlling the receive scalar, and designing the phase shifts. Since the concurrent transmissions of all computation and communication signals are aided by the discrete phase shifts at the RIS, the considered problem (P0) is a challenging mixed integer programming problem. To tackle this intractable issue, we decompose the original problem (P0) into a non-convex problem (P1) and a combinatorial problem (P2), which are characterized by the continuous and discrete variables, respectively. For the transceiver design problem (P1), the power allocation subproblem is first solved by invoking the difference-of-convex programming, and then the receive control subproblem is addressed by using the successive convex approximation, where the closed-form expressions of simplified cases are derived to obtain deep insights. For the reflection design problem (P2), the relaxation-then-quantization method is adopted to find a suboptimal solution for striking a trade-off between complexity and performance. Afterwards, an alternating optimization algorithm is developed to solve the non-linear and non-convex problem (P0) iteratively. Finally, simulation results reveal that 1) the proposed RIS-aided hybrid network can support the on-demand communication and computation efficiently, 2) the performance gains can be improved by properly selecting the location of the RIS, and 3) the designed algorithms are also applicable to conventional networks with only AirFL or NOMA users.
Federated learning (FL) as a promising edge-learning framework can effectively address the latency and privacy issues by featuring distributed learning at the devices and model aggregation in the central server. In order to enable efficient wireless
Enhanced mobile broadband (eMBB) and ultrareliable and low-latency communications (URLLC) are two major expected services in the fifth-generation mobile communication systems (5G). Specifically, eMBB applications support extremely high data rate comm
Over-the-air federated edge learning (Air-FEEL) is a communication-efficient solution for privacy-preserving distributed learning over wireless networks. Air-FEEL allows one-shot over-the-air aggregation of gradient/model-updates by exploiting the wa
This paper investigates the transmission power control in over-the-air federated edge learning (Air-FEEL) system. Different from conventional power control designs (e.g., to minimize the individual mean squared error (MSE) of the over-the-air aggrega
Massive multiple-input multiple-output (MIMO) and non-orthogonal multiple access (NOMA) are two key techniques for enabling massive connectivity in future wireless networks. A massive MIMO-NOMA system can deliver remarkable spectral improvements and