ترغب بنشر مسار تعليمي؟ اضغط هنا

A Complete Discriminative Tensor Representation Learning for Two-Dimensional Correlation Analysis

148   0   0.0 ( 0 )
 نشر من قبل Lei Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As an effective tool for two-dimensional data analysis, two-dimensional canonical correlation analysis (2DCCA) is not only capable of preserving the intrinsic structural information of original two-dimensional (2D) data, but also reduces the computational complexity effectively. However, due to the unsupervised nature, 2DCCA is incapable of extracting sufficient discriminatory representations, resulting in an unsatisfying performance. In this letter, we propose a complete discriminative tensor representation learning (CDTRL) method based on linear correlation analysis for analyzing 2D signals (e.g. images). This letter shows that the introduction of the complete discriminatory tensor representation strategy provides an effective vehicle for revealing, and extracting the discriminant representations across the 2D data sets, leading to improved results. Experimental results show that the proposed CDTRL outperforms state-of-the-art methods on the evaluated data sets.



قيم البحث

اقرأ أيضاً

Representation learning is currently a very hot topic in modern machine learning, mostly due to the great success of the deep learning methods. In particular low-dimensional representation which discriminates classes can not only enhance the classifi cation procedure, but also make it faster, while contrary to the high-dimensional embeddings can be efficiently used for visual based exploratory data analysis. In this paper we propose Maximum Entropy Linear Manifold (MELM), a multidimensional generalization of Multithreshold Entropy Linear Classifier model which is able to find a low-dimensional linear data projection maximizing discriminativeness of projected classes. As a result we obtain a linear embedding which can be used for classification, class aware dimensionality reduction and data visualization. MELM provides highly discriminative 2D projections of the data which can be used as a method for constructing robust classifiers. We provide both empirical evaluation as well as some interesting theoretical properties of our objective function such us scale and affine transformation invariance, connections with PCA and bounding of the expected balanced accuracy error.
79 - Lei Gao , Lin Qi , Enqing Chen 2021
In this paper, we propose the Discriminative Multiple Canonical Correlation Analysis (DMCCA) for multimodal information analysis and fusion. DMCCA is capable of extracting more discriminative characteristics from multimodal information representation s. Specifically, it finds the projected directions which simultaneously maximize the within-class correlation and minimize the between-class correlation, leading to better utilization of the multimodal information. In the process, we analytically demonstrate that the optimally projected dimension by DMCCA can be quite accurately predicted, leading to both superior performance and substantial reduction in computational cost. We further verify that Canonical Correlation Analysis (CCA), Multiple Canonical Correlation Analysis (MCCA) and Discriminative Canonical Correlation Analysis (DCCA) are special cases of DMCCA, thus establishing a unified framework for Canonical Correlation Analysis. We implement a prototype of DMCCA to demonstrate its performance in handwritten digit recognition and human emotion recognition. Extensive experiments show that DMCCA outperforms the traditional methods of serial fusion, CCA, MCCA and DCCA.
99 - Shupeng Gui 2018
Graph embedding is a central problem in social network analysis and many other applications, aiming to learn the vector representation for each node. While most existing approaches need to specify the neighborhood and the dependence form to the neigh borhood, which may significantly degrades the flexibility of representation, we propose a novel graph node embedding method (namely GESF) via the set function technique. Our method can 1) learn an arbitrary form of representation function from neighborhood, 2) automatically decide the significance of neighbors at different distances, and 3) be applied to heterogeneous graph embedding, which may contain multiple types of nodes. Theoretical guarantee for the representation capability of our method has been proved for general homogeneous and heterogeneous graphs and evaluation results on benchmark data sets show that the proposed GESF outperforms the state-of-the-art approaches on producing node vectors for classification tasks.
High dimensional data analysis for exploration and discovery includes three fundamental tasks: dimensionality reduction, clustering, and visualization. When the three associated tasks are done separately, as is often the case thus far, inconsistencie s can occur among the tasks in terms of data geometry and others. This can lead to confusing or misleading data interpretation. In this paper, we propose a novel neural network-based method, called Consistent Representation Learning (CRL), to accomplish the three associated tasks end-to-end and improve the consistencies. The CRL network consists of two nonlinear dimensionality reduction (NLDR) transformations: (1) one from the input data space to the latent feature space for clustering, and (2) the other from the clustering space to the final 2D or 3D space for visualization. Importantly, the two NLDR transformations are performed to best satisfy local geometry preserving (LGP) constraints across the spaces or network layers, to improve data consistencies along with the processing flow. Also, we propose a novel metric, clustering-visualization inconsistency (CVI), for evaluating the inconsistencies. Extensive comparative results show that the proposed CRL neural network method outperforms the popular t-SNE and UMAP-based and other contemporary clustering and visualization algorithms in terms of evaluation metrics and visualization.
Clustering is one of the fundamental problems in unsupervised learning. Recent deep learning based methods focus on learning clustering oriented representations. Among those methods, Variational Deep Embedding achieves great success in various cluste ring tasks by specifying a Gaussian Mixture prior to the latent space. However, VaDE suffers from two problems: 1) it is fragile to the input noise; 2) it ignores the locality information between the neighboring data points. In this paper, we propose a joint learning framework that improves VaDE with a robust embedding discriminator and a local structure constraint, which are both helpful to improve the robustness of our model. Experiment results on various vision and textual datasets demonstrate that our method outperforms the state-of-the-art baseline models in all metrics. Further detailed analysis shows that our proposed model is very robust to the adversarial inputs, which is a desirable property for practical applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا