ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of Planetary Nebulae angular diameters from radio continuum Spectral Energy Distribution modeling

157   0   0.0 ( 0 )
 نشر من قبل Ivan Bojicic
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Powerful new, high resolution, high sensitivity, multi-frequency, wide-field radio surveys such as the Australian Square Kilometre Array Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) are emerging. They will offer fresh opportunities to undertake new determinations of useful parameters for various kinds of extended astrophysical phenomena. Here, we consider specific application to angular size determinations of Planetary Nebulae (PNe) via a new radio continuum Spectral Energy Distribution (SED) fitting technique. We show that robust determinations of angular size can be obtained, comparable to the best optical and radio observations but with the potential for consistent application across the population. This includes unresolved and/or heavily obscured PNe that are extremely faint or even non-detectable in the optical.



قيم البحث

اقرأ أيضاً

132 - L. Cerrigone 2010
Searching for variability, we have observed a sample of hot post-AGB stars and young Planetary Nebulae candidates with the Very Large Array at 4.8, 8.4, and 22.4 GHz. The sources had been previously detected in the radio continuum, which is a proof t hat the central stars have started ionising their circumstellar envelopes and an increase in radio flux with time can be expected as a result of the progression of the ionisation front. Such a behaviour has been found in IRAS 18062+2410, whose radio modelling has allowed us to determine that its ionised mass has increased from 10^{-4} to 3.3 10^{-4} M_sun in 8 years and its envelope has become optically thin at lower frequencies. Different temporal behaviours have been found for three other sources. IRAS 17423-1755 has shown a possibly periodic pattern and an inversion of its radio spectral index, as expected from a varying stellar wind. We estimate that the radio flux arises from a very compact region around the central star (10^{15} cm) with an electron density of 2 10^6 cm^{-3}. IRAS 22568+6141 and 17516-2525 have decreased their radio flux densities of about 10% per year over 4 years. While a linear increase of the flux density with time points out to the progression of the ionisation front in the envelope, decreases as well as quasi-periodic patterns may indicate the presence of unstable stellar winds/jets or thick dusty envelopes absorbing ionising photons.
70 - T J Galvin , N Seymour , J Marvil 2017
We have acquired radio continuum data between 70,MHz and 48,GHz for a sample of 19 southern starburst galaxies at moderate redshifts ($0.067 < z < 0.227$) with the aim of separating synchrotron and free-free emission components. Using a Bayesian fram ework we find the radio continuum is rarely characterised well by a single power law, instead often exhibiting low frequency turnovers below 500,MHz, steepening at mid-to-high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 to 500,MHz the radio-continuum at low frequency ($ u < 200$,MHz) could be overestimated by upwards of a factor of twelve if a simple power law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be $alpha=-1.06$, which is steeper then the canonical value of $-0.8$ for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
The Gaia Data Release 2 provides precise astrometry for nearly 1.5 billion sources across the entire sky, including several thousand asteroids. In this work, we provide evidence that reasonably large asteroids (diameter $>$ 20 km) have high correlati ons with Gaia relative flux uncertainties and systematic right ascension errors. We further capture these correlations using a logistic Bayesian additive regression tree model. We compile a small list of probable large asteroids that can be targeted for direct diameter measurements and shape reconstruction.
The radio galaxy IC310 located in the Perseus Cluster is one of the brightest objects in the radio and X-ray bands, and one of the closest active galactic nuclei observed in very-high energies. In GeV - TeV $gamma$-rays, IC310 was detected in low and high flux states by the MAGIC telescopes from October 2009 to February 2010. Taking into account that the spectral energy distribution (SED) up to a few GeV seems to exhibit a double-peak feature and that a single-zone synchrotron self-Compton (SSC) model can explain all of the multiwavelength emission except for the non-simultaneous MAGIC emission, we interpret, in this work, the multifrequency data set of the radio galaxy IC310 in the context of homogeneous hadronic and leptonic models. In the leptonic framework, we present a multi-zone SSC model with two electron populations to explain the whole SED whereas for the hadronic model, we propose that a single-zone SSC model describes the SED up to a few GeVs and neutral pion decay products resulting from p$gamma$ interactions could describe the TeV - GeV $gamma$-ray spectra. These interactions occur when Fermi-accelerated protons interact with the seed photons around the SSC peaks. We show that, in the leptonic model the minimum Lorentz factor of second electron population is exceedingly high $gamma_esim10^5$ disfavoring this model, and in the hadronic model the required proton luminosity is not extremely high $sim 10^{44}$ erg/s, provided that charge neutrality between the number of electrons and protons is given. Correlating the TeV $gamma$-ray and neutrino spectra through photo-hadronic interactions, we find that the contribution of the emitting region of IC310 to the observed neutrino and ultra-high-energy cosmic ray fluxes are negligible.
Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z > 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep, but we also find ultra-steep SEDs. In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least 18% of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 solar masses per year.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا