ﻻ يوجد ملخص باللغة العربية
Additive noise models are a class of causal models in which each variable is defined as a function of its causes plus independent noise. In such models, the ordering of variables by marginal variances may be indicative of the causal order. We introduce varsortability as a measure of agreement between the ordering by marginal variance and the causal order. We show how varsortability dominates the performance of continuous structure learning algorithms on synthetic data. On real-world data, varsortability is an implausible and untestable assumption and we find no indication of high varsortability. We aim to raise awareness that varsortability easily occurs in simulated additive noise models. We provide a baseline method that explicitly exploits varsortability and advocate reporting varsortability in benchmarking data.
Deep latent variable models (DLVMs) combine the approximation abilities of deep neural networks and the statistical foundations of generative models. Variational methods are commonly used for inference; however, the exact likelihood of these models h
Machine Learning algorithms are increasingly being used in recent years due to their flexibility in model fitting and increased predictive performance. However, the complexity of the models makes them hard for the data analyst to interpret the result
Single Index Models (SIMs) are simple yet flexible semi-parametric models for classification and regression. Response variables are modeled as a nonlinear, monotonic function of a linear combination of features. Estimation in this context requires le
A generalized additive model (GAM, Hastie and Tibshirani (1987)) is a nonparametric model by the sum of univariate functions with respect to each explanatory variable, i.e., $f({mathbf x}) = sum f_j(x_j)$, where $x_jinmathbb{R}$ is $j$-th component o
Additive models form a widely popular class of regression models which represent the relation between covariates and response variables as the sum of low-dimensional transfer functions. Besides flexibility and accuracy, a key benefit of these models