ﻻ يوجد ملخص باللغة العربية
The non-equilibrium state of two oscillators with a mutual interaction and coupled to separate heat baths is discussed. Bosonic baths are considered, and an exact spectral representation for the elements of the covariance matrix is provided analytically. A wide class of spectral densities for the relevant bath modes is allowed for. The validity of the fluctuation-dissipation theorem is established for global equilibrium (both baths at the same temperature) in the stationary state. Spectral measures of entanglement are suggested by comparing to the equilibrium spectrum of zero-point fluctuations. No rotating-wave approximation is applied, and anomalous heat transport from cold to hot bath, as reported in earlier work, is demonstrated not to occur.
In d-dimensional lattices of coupled quantum harmonic oscillators, we analyze the heat current caused by two thermal baths of different temperature, which are coupled to opposite ends of the lattice, with focus on the validity of Fouriers law of heat
Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks. Of particular importance is the ability to distribute entanglement
We investigate the steady state properties arising from the open system dynamics described by a memoryless (Markovian) quantum collision model, corresponding to a master equation in the ultra-strong coupling regime. By carefully assessing the work co
Recent years have seen tremendous progress in the theoretical understanding of quantum systems driven dissipatively by coupling them to different baths at their edges. This was possible because of the concurrent advances in the models used to represe
An extremely useful evolution equation that allows systematically calculating the two-time correlation functions (CFs) of system operators for non-Markovian open (dissipative) quantum systems is derived. The derivation is based on perturbative quantu