ترغب بنشر مسار تعليمي؟ اضغط هنا

History-Augmented Collaborative Filtering for Financial Recommendations

39   0   0.0 ( 0 )
 نشر من قبل Baptiste Barreau
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In many businesses, and particularly in finance, the behavior of a client might drastically change over time. It is consequently crucial for recommender systems used in such environments to be able to adapt to these changes. In this study, we propose a novel collaborative filtering algorithm that captures the temporal context of a user-item interaction through the users and items recent interaction histories to provide dynamic recommendations. The algorithm, designed with issues specific to the financial world in mind, uses a custom neural network architecture that tackles the non-stationarity of users and items behaviors. The performance and properties of the algorithm are monitored in a series of experiments on a G10 bond request for quotation proprietary database from BNP Paribas Corporate and Institutional Banking.



قيم البحث

اقرأ أيضاً

Time series forecasting is a crucial component of many important applications, ranging from forecasting the stock markets to energy load prediction. The high-dimensionality, velocity and variety of the data collected in these applications pose signif icant and unique challenges that must be carefully addressed for each of them. In this work, a novel Temporal Logistic Neural Bag-of-Features approach, that can be used to tackle these challenges, is proposed. The proposed method can be effectively combined with deep neural networks, leading to powerful deep learning models for time series analysis. However, combining existing BoF formulations with deep feature extractors pose significant challenges: the distribution of the input features is not stationary, tuning the hyper-parameters of the model can be especially difficult and the normalizations involved in the BoF model can cause significant instabilities during the training process. The proposed method is capable of overcoming these limitations by a employing a novel adaptive scaling mechanism and replacing the classical Gaussian-based density estimation involved in the regular BoF model with a logistic kernel. The effectiveness of the proposed approach is demonstrated using extensive experiments on a large-scale financial time series dataset that consists of more than 4 million limit orders.
We focus on the problem of streaming recommender system and explore novel collaborative filtering algorithms to handle the data dynamicity and complexity in a streaming manner. Although deep neural networks have demonstrated the effectiveness of reco mmendation tasks, it is lack of explorations on integrating probabilistic models and deep architectures under streaming recommendation settings. Conjoining the complementary advantages of probabilistic models and deep neural networks could enhance both model effectiveness and the understanding of inference uncertainties. To bridge the gap, in this paper, we propose a Coupled Variational Recurrent Collaborative Filtering (CVRCF) framework based on the idea of Deep Bayesian Learning to handle the streaming recommendation problem. The framework jointly combines stochastic processes and deep factorization models under a Bayesian paradigm to model the generation and evolution of users preferences and items popularities. To ensure efficient optimization and streaming update, we further propose a sequential variational inference algorithm based on a cross variational recurrent neural network structure. Experimental results on three benchmark datasets demonstrate that the proposed framework performs favorably against the state-of-the-art methods in terms of both temporal dependency modeling and predictive accuracy. The learned latent variables also provide visualized interpretations for the evolution of temporal dynamics.
Two main challenges in recommender systems are modeling users with heterogeneous taste, and providing explainable recommendations. In this paper, we propose the neural Attentive Multi-Persona Collaborative Filtering (AMP-CF) model as a unified soluti on for both problems. AMP-CF breaks down the user to several latent personas (profiles) that identify and discern the different tastes and inclinations of the user. Then, the revealed personas are used to generate and explain the final recommendation list for the user. AMP-CF models users as an attentive mixture of personas, enabling a dynamic user representation that changes based on the item under consideration. We demonstrate AMP-CF on five collaborative filtering datasets from the domains of movies, music, video games and social networks. As an additional contribution, we propose a novel evaluation scheme for comparing the different items in a recommendation list based on the distance from the underlying distribution of tastes in the users historical items. Experimental results show that AMP-CF is competitive with other state-of-the-art models. Finally, we provide qualitative results to showcase the ability of AMP-CF to explain its recommendations.
The interactions of users and items in recommender system could be naturally modeled as a user-item bipartite graph. In recent years, we have witnessed an emerging research effort in exploring user-item graph for collaborative filtering methods. Neve rtheless, the formation of user-item interactions typically arises from highly complex latent purchasing motivations, such as high cost performance or eye-catching appearance, which are indistinguishably represented by the edges. The existing approaches still remain the differences between various purchasing motivations unexplored, rendering the inability to capture fine-grained user preference. Therefore, in this paper we propose a novel Multi-Component graph convolutional Collaborative Filtering (MCCF) approach to distinguish the latent purchasing motivations underneath the observed explicit user-item interactions. Specifically, there are two elaborately designed modules, decomposer and combiner, inside MCCF. The former first decomposes the edges in user-item graph to identify the latent components that may cause the purchasing relationship; the latter then recombines these latent components automatically to obtain unified embeddings for prediction. Furthermore, the sparse regularizer and weighted random sample strategy are utilized to alleviate the overfitting problem and accelerate the optimization. Empirical results on three real datasets and a synthetic dataset not only show the significant performance gains of MCCF, but also well demonstrate the necessity of considering multiple components.
Model-based collaborative filtering analyzes user-item interactions to infer latent factors that represent user preferences and item characteristics in order to predict future interactions. Most collaborative filtering algorithms assume that these la tent factors are static, although it has been shown that user preferences and item perceptions drift over time. In this paper, we propose a conjugate and numerically stable dynamic matrix factorization (DCPF) based on compound Poisson matrix factorization that models the smoothly drifting latent factors using Gamma-Markov chains. We propose a numerically stable Gamma chain construction, and then present a stochastic variational inference approach to estimate the parameters of our model. We apply our model to time-stamped ratings data sets: Netflix, Yelp, and Last.fm, where DCPF achieves a higher predictive accuracy than state-of-the-art static and dynamic factorization models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا