ﻻ يوجد ملخص باللغة العربية
The detection of light helicity is key to several research and industrial applications from drugs production to optical communications. However, the direct measurement of the light helicity is inherently impossible with conventional photodetectors based on III-V or IV-VI semiconductors, being naturally non-chiral. The prior polarization analysis of the light by a series of often moving optical elements is necessary before light is sent to the detector. A method is here presented to effectively give to the conventional dilute nitride GaAs-based semiconductor epilayer a chiral photoconductivity in paramagnetic-defect-engineered samples. The detection scheme relies on the giant spin-dependent recombination of conduction electrons and the accompanying spin polarization of the engineered defects to control the conduction band population via the electrons spin polarization. As the conduction electron spin polarization is, in turn, intimately linked to the excitation light polarization, the light polarization state can be determined by a simple conductivity measurement. This effectively gives the GaAsN epilayer a chiral photoconductivity capable of discriminating the handedness of an incident excitation light in addition to its intensity. This approach, removing the need of any optical elements in front of a non-chiral detector, could offer easier integration and miniaturisation. This new chiral photodetector could potentially operate in a spectral range from the visible to the infra-red using (In)(Al)GaAsN alloys or ion-implanted nitrogen-free III-V compounds.
We present a graphene photodetector for telecom applications based on a silicon photonic crystal defect waveguide. The photonic structure is used to confine the propagating light in a narrow region in the graphene layer to enhance light-matter intera
We present a mid-IR ($lambda approx$ 8.3 $mu$m) quantum well infrared photodetector (QWIP) fabricated on a mid-IR transparent substrate, allowing photodetection with illumination from either the front surface or through the substrate. The device is b
Si-based photodetectors satisfy the criteria of low-cost and environmental-friendly, and can enable the development of on-chip complementary metal-oxide-semiconductor (CMOS)-compatible photonic systems. However, extending their room-temperature photo
We propose and numerically simulate an optoelectronic compact circular polarimeter. It allows to electrically measure the degree of circular polarization and light intensity at room temperature for a wide range of incidence angles in a single shot. T
The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using sus