ترغب بنشر مسار تعليمي؟ اضغط هنا

DoA-LF: A Location Fingerprint Positioning Algorithm with Millimeter-Wave

121   0   0.0 ( 0 )
 نشر من قبل Zhiqing Wei
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Location fingerprint (LF) has been widely applied in indoor positioning. However, the existing studies on LF mostly focus on the fingerprint of WiFi below 6 GHz, bluetooth, ultra wideband (UWB), etc. The LF with millimeter-wave (mmWave) was rarely addressed. Since mmWave has the characteristics of narrow beam, fast signal attenuation and wide bandwidth, etc., the positioning error can be reduced. In this paper, an LF positioning method with mmWave is proposed, which is named as DoA-LF. Besides received signal strength indicator (RSSI) of access points (APs), the fingerprint database contains direction of arrival (DoA) information of APs, which is obtained via DoA estimation. Then the impact of the number of APs, the interval of reference points (RPs), the channel model of mmWave and the error of DoA estimation algorithm on positioning error is analyzed with Cramer-Rao lower bound (CRLB). Finally, the proposed DoA-LF algorithm with mmWave is verified through simulations. The simulation results have proved that mmWave can reduce the positioning error due to the fact that mmWave has larger path loss exponent and smaller variance of shadow fading compared with low frequency signals. Besides, accurate DoA estimation can reduce the positioning error.



قيم البحث

اقرأ أيضاً

85 - Fanxu Meng 2021
The direction of arrival (DOA) estimation in array signal processing is an important research area. The effectiveness of the direction of arrival greatly determines the performance of multi-input multi-output (MIMO) antenna systems. The multiple sign al classification (MUSIC) algorithm, which is the most canonical and widely used subspace-based method, has a moderate estimation performance of DOA. However, in hybrid massive MIMO systems, the received signals at the antennas are not sent to the receiver directly, and spatial covariance matrix, which is essential in MUSIC algorithm, is thus unavailable. Therefore, the spatial covariance matrix reconstruction is required for the application of MUSIC in hybrid massive MIMO systems. In this article, we present a quantum algorithm for MUSIC-based DOA estimation in hybrid massive MIMO systems. Compared with the best-known classical algorithm, our quantum algorithm can achieve an exponential speedup on some parameters and a polynomial speedup on others under some mild conditions. In our scheme, we first present the quantum subroutine for the beam sweeping based spatial covariance matrix reconstruction, where we implement a quantum singular vector transition process to avoid extending the steering vectors matrix into the Hermitian form. Second, a variational quantum density matrix eigensolver (VQDME) is proposed for obtaining signal and noise subspaces, where we design a novel objective function in the form of the trace of density matrices product. Finally, a quantum labeling operation is proposed for the direction of arrival estimation of the signal.
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional to the codebook size. To improve the efficiency of beam tracking, we propose a beam tracking scheme based on the channel fingerprint database, which comprises mappings between statistical beamforming gains and user locations. The scheme tracks user movement by utilizing the trained beam configurations and estimating the gains of beam configurations that are not trained. Simulations show that the proposed scheme achieves significant beamforming performance gains over existing beam tracking schemes.
Multi-point detection of the full-scale environment is an important issue in autonomous driving. The state-of-the-art positioning technologies (such as RADAR and LIDAR) are incapable of real-time detection without line-of-sight. To address this issue , this paper presents a novel multi-point vehicular positioning technology via emph{millimeter-wave} (mmWave) transmission that exploits multi-path reflection from a emph{target vehicle} (TV) to a emph{sensing vehicle} (SV), which enables the SV to fast capture both the shape and location information of the TV in emph{non-line-of-sight} (NLoS) under the assistance of multi-path reflections. A emph{phase-difference-of-arrival} (PDoA) based hyperbolic positioning algorithm is designed to achieve the synchronization between the TV and SV. The emph{stepped-frequency-continuous-wave} (SFCW) is utilized as signals for multi-point detection of the TVs. Transceiver separation enables our approach to work in NLoS conditions and achieve much lower latency compared with conventional positioning techniques.
The millimeter wave (mmWave) band, which is a prime candidate for 5G cellular networks, seems attractive for wireless energy harvesting. This is because it will feature large antenna arrays as well as extremely dense base station (BS) deployments. Th e viability of mmWave for energy harvesting though is unclear, due to the differences in propagation characteristics such as extreme sensitivity to building blockages. This paper considers a scenario where low-power devices extract energy and/or information from the mmWave signals. Using stochastic geometry, analytical expressions are derived for the energy coverage probability, the average harvested power, and the overall (energy-and-information) coverage probability at a typical wireless-powered device in terms of the BS density, the antenna geometry parameters, and the channel parameters. Numerical results reveal several network and device level design insights. At the BSs, optimizing the antenna geometry parameters such as beamwidth can maximize the network-wide energy coverage for a given user population. At the device level, the performance can be substantially improved by optimally splitting the received signal for energy and information extraction, and by deploying multi-antenna arrays. For the latter, an efficient low-power multi-antenna mmWave receiver architecture is proposed for simultaneous energy and information transfer. Overall, simulation results suggest that mmWave energy harvesting generally outperforms lower frequency solutions.
We introduce clustered millimeter wave networks with invoking non-orthogonal multiple access~(NOMA) techniques, where the NOMA users are modeled as Poisson cluster processes and each cluster contains a base station (BS) located at the center. To prov ide realistic directional beamforming, an actual antenna array pattern is deployed at all BSs. We propose three distance-dependent user selection strategies to appraise the path loss impact on the performance of our considered networks. With the aid of such strategies, we derive tractable analytical expressions for the coverage probability and system throughput. Specifically, closed-form expressions are deduced under a sparse network assumption to improve the calculation efficiency. It theoretically demonstrates that the large antenna scale benefits the near user, while such influence for the far user is fluctuant due to the randomness of the beamforming. Moreover, the numerical results illustrate that: 1) the proposed system outperforms traditional orthogonal multiple access techniques and the commonly considered NOMA-mmWave scenarios with the random beamforming; 2) the coverage probability has a negative correlation with the variance of intra-cluster receivers; 3) 73 GHz is the best carrier frequency for near user and 28 GHz is the best choice for far user; 4) an optimal number of the antenna elements exists for maximizing the system throughput.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا