ﻻ يوجد ملخص باللغة العربية
The density ratio model (DRM) provides a flexible and useful platform for combining information from multiple sources. In this paper, we consider statistical inference under two-sample DRMs with additional parameters defined through and/or additional auxiliary information expressed as estimating equations. We examine the asymptotic properties of the maximum empirical likelihood estimators (MELEs) of the unknown parameters in the DRMs and/or defined through estimating equations, and establish the chi-square limiting distributions for the empirical likelihood ratio (ELR) statistics. We show that the asymptotic variance of the MELEs of the unknown parameters does not decrease if one estimating equation is dropped. Similar properties are obtained for inferences on the cumulative distribution function and quantiles of each of the populations involved. We also propose an ELR test for the validity and usefulness of the auxiliary information. Simulation studies show that correctly specified estimating equations for the auxiliary information result in more efficient estimators and shorter confidence intervals. Two real-data examples are used for illustrations.
The Gini index is a popular inequality measure with many applications in social and economic studies. This paper studies semiparametric inference on the Gini indices of two semicontinuous populations. We characterize the distribution of each semicont
Statistical methods with empirical likelihood (EL) are appealing and effective especially in conjunction with estimating equations through which useful data information can be adaptively and flexibly incorporated. It is also known in the literature t
The Youden index is a popular summary statistic for receiver operating characteristic curve. It gives the optimal cutoff point of a biomarker to distinguish the diseased and healthy individuals. In this paper, we propose to model the distributions of
Simultaneous, post-hoc inference is desirable in large-scale hypotheses testing as it allows for exploration of data while deciding on criteria for proclaiming discoveries. It was recently proved that all admissible post-hoc inference methods for the
Additive models, as a natural generalization of linear regression, have played an important role in studying nonlinear relationships. Despite of a rich literature and many recent advances on the topic, the statistical inference problem in additive mo