Fronthaul Compression and Passive Beamforming Design for Intelligent Reflecting Surface-aided Cloud Radio Access Networks


الملخص بالإنكليزية

This letter studies a cloud radio access network (C-RAN) with multiple intelligent reflecting surfaces (IRS) deployed between users and remote radio heads (RRH). Specifically, we consider the uplink transmission where each RRH quantizes the received signals from the users by either point-to-point compression or Wyner-Ziv compression and then transmits the quantization bits to the BBU pool through capacity limited fronthhual links. To maximize the uplink sum rate, we jointly optimize the passive beamformers of IRSs and the quantization noise covariance matrices of fronthoul compression. An joint fronthaul compression and passive beamforming design is proposed by exploiting the Arimoto-Blahut algorithm and semidefinte relaxation (SDR). Numerical results show the performance gain achieved by the proposed algorithm.

تحميل البحث