ترغب بنشر مسار تعليمي؟ اضغط هنا

Running vacuum against the $H_0$ and $sigma_8$ tensions

180   0   0.0 ( 0 )
 نشر من قبل Joan Sola
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cosmological term, $Lambda$, was introduced $104$ years ago by Einstein in his gravitational field equations. Whether $Lambda$ is a rigid quantity or a dynamical variable in cosmology has been a matter of debate for many years, especially after the introduction of the general notion of dark energy (DE). $Lambda$ is associated to the vacuum energy density, $rho_{rm vac}$, and one may expect that it evolves slowly with the cosmological expansion. Herein we present a devoted study testing this possibility using the promising class of running vacuum models (RVMs). We use a large string $SNIa+BAO+H(z)+LSS+CMB$ of modern cosmological data, in which for the first time the CMB part involves the full Planck 2018 likelihood for these models. We test the dependence of the results on the threshold redshift $z_*$ at which the vacuum dynamics is activated in the recent past and find positive signals up to $sim4.0sigma$ for $z_*simeq 1$. The RVMs prove very competitive against the standard $Lambda$CDM model and give a handle for solving the $sigma_8$ tension and alleviating the $H_0$ one.



قيم البحث

اقرأ أيضاً

We do not solve tensions with concordance cosmology; we do obtain $H_0approx 74,$km/s/Mpc from CMB+BAO+SN data in our model, but that is not the point. Discrepancies in Hubble constant values obtained by various astrophysical probes should not be vie wed in isolation. While one can resolve at least some of the differences through either an early time transition or late time transition in the expansion rate, these introduce other changes. We advocate a holistic approach, using a wide variety of cosmic data, rather than focusing on one number, $H_0$. Vacuum metamorphosis, a late time transition physically motivated by quantum gravitational effects and with the same number of parameters as lcdm, can successfully give a high $H_0$ value from cosmic microwave background data but fails when combined with multiple distance probes. We also explore the influence of spatial curvature, and of a conjoined analysis of cosmic expansion and growth.
With the entrance of cosmology in its new era of high precision experiments, low- and high-redshift observations set off tensions in the measurements of both the present-day expansion rate ($H_0$) and the clustering of matter ($S_8$). We provide a si multaneous explanation of these tensions using the Parker-Raval Vacuum Metamorphosis (VM) model with the neutrino sector extended beyond the three massless Standard Model flavours and the curvature of the universe considered as a model parameter. To estimate the effect on cosmological observables we implement various extensions of the VM model in the standard texttt{CosmoMC} pipeline and establish which regions of parameter space are empirically viable to resolve the $H_0$ and $S_8$ tensions. We find that the likelihood analyses of the physically motivated VM model, which has the same number of free parameters as in the spatially-flat $Lambda$CDM model, always gives $H_0$ in agreement with the local measurements (even when BAO or Pantheon data are included) at the price of much larger $chi^2$ than $Lambda$CDM. The inclusion of massive neutrinos and extra relativistic species quantified through two well known parameters $sum m_{ u}$ and $N_{rm eff}$, does not modify this result, and in some cases improves the goodness of the fit. In particular, for the original VM+$sum m_ u$+$N_{rm eff}$ and the Planck+BAO+Pantheon dataset combination, we find evidence for $sum m_{ u}=0.80^{+0.18}_{-0.22}~{rm eV}$ at more than $3sigma$, no indication for extra neutrino species, $H_0=71.0pm1.2$~km/s/Mpc in agreement with local measurements, and $S_8=0.755pm0.032$ that solves the tension with the weak lensing measurements. [Abridged]
We derive for the first time the growth index of matter perturbations of the FLRW flat cosmological models in which the vacuum energy depends on redshift. A particularly well motivated model of this type is the so-called quantum field vacuum, in whic h apart from a leading constant term $Lambda_0$ there is also a $H^{2}$-dependence in the functional form of vacuum, namely $Lambda(H)=Lambda_{0}+3 u (H^{2}-H^{2}_{0})$. Since $| u|ll1$ this form endows the vacuum energy of a mild dynamics which affects the evolution of the main cosmological observables at the background and perturbation levels. Specifically, at the perturbation level we find that the growth index of the running vacuum cosmological model is $gamma_{Lambda_{H}} approx frac{6+3 u}{11-12 u}$ and thus it nicely extends analytically the result of the $Lambda$CDM model, $gamma_{Lambda}approx 6/11$.
The standard cosmological model successfully describes many observations from widely different epochs of the Universe, from primordial nucleosynthesis to the accelerating expansion of the present day. However, as the basic cosmological parameters of the model are being determined with increasing and unprecedented precision, it is not guaranteed that the same model will fit more precise observations from widely different cosmic epochs. Discrepancies developing between observations at early and late cosmological time may require an expansion of the standard model, and may lead to the discovery of new physics. The workshop Tensions between the Early and the Late Universe was held at the Kavli Institute for Theoretical Physics on July 15-17 2019 (More details of the workshop (including on-line presentations) are given at the website: https://www.kitp.ucsb.edu/activities/enervac-c19) to evaluate increasing evidence for these discrepancies, primarily in the value of the Hubble constant as well as ideas recently proposed to explain this tension. Multiple new observational results for the Hubble constant were presented in the time frame of the workshop using different probes: Cepheids, strong lensing time delays, tip of the red giant branch (TRGB), megamasers, Oxygen-rich Miras and surface brightness fluctuations (SBF) resulting in a set of six new ones in the last several months. Here we present the summary plot of the meeting that shows combining any three independent approaches to measure H$_0$ in the late universe yields tension with the early Universe values between 4.0$sigma$ and 5.8$sigma$. This shows that the discrepancy does not appear to be dependent on the use of any one method, team, or source. Theoretical ideas to explain the discrepancy focused on new physics in the decade of expansion preceding recombination as the most plausible. This is a brief summary of the workshop.
82 - Lei-Hua Liu , Wu-Long Xu 2019
Inspired by cite{Jiang:2018uce}, we propose a similar curvaton mechanism whose realization occurs in preheating process, in which the effective mass is running (its potential consists of coupling part and exponential part whose contribution is subdom inant comparing to the coupling part). The production of curvaton contains the cases of narrow resonance and broad resonances whose criteria comes via the spectral index of curvaton. Since the inflationary potential is chaotic inflation (quadratic potential), it could smoothly transit into the preheating process. Once the entropy perturbation transferred into curvature perturbation, we will use $delta N$ formalism to investigate its validity. By neglecting the contribution of exponential potential of curvaton, we calculate power spectrum $P_zeta$ and non linear Non-Gaussian parameter $f_{NL}$. Our calculation analytically shows that these two observables are independent of potential of inflaton. Finally, as the curvaton almost decay (inflaton field vanishes), the exponential potential will be approaching a constant of order of cosmological constant, which may play a role of dark energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا