ﻻ يوجد ملخص باللغة العربية
Learning from heterogeneous data poses challenges such as combining data from various sources and of different types. Meanwhile, heterogeneous data are often associated with missingness in real-world applications due to heterogeneity and noise of input sources. In this work, we propose the variational selective autoencoder (VSAE), a general framework to learn representations from partially-observed heterogeneous data. VSAE learns the latent dependencies in heterogeneous data by modeling the joint distribution of observed data, unobserved data, and the imputation mask which represents how the data are missing. It results in a unified model for various downstream tasks including data generation and imputation. Evaluation on both low-dimensional and high-dimensional heterogeneous datasets for these two tasks shows improvement over state-of-the-art models.
We would like to learn a representation of the data which decomposes an observation into factors of variation which we can independently control. Specifically, we want to use minimal supervision to learn a latent representation that reflects the sema
This paper proposes Dirichlet Variational Autoencoder (DirVAE) using a Dirichlet prior for a continuous latent variable that exhibits the characteristic of the categorical probabilities. To infer the parameters of DirVAE, we utilize the stochastic gr
Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phenomenon where a significant number of
Learning interpretable representations of data remains a central challenge in deep learning. When training a deep generative model, the observed data are often associated with certain categorical labels, and, in parallel with learning to regenerate d
Variation Autoencoder (VAE) has become a powerful tool in modeling the non-linear generative process of data from a low-dimensional latent space. Recently, several studies have proposed to use VAE for unsupervised clustering by using mixture models t