ﻻ يوجد ملخص باللغة العربية
As an increasing number of leadership-class systems embrace GPU accelerators in the race towards exascale, efficient communication of GPU data is becoming one of the most critical components of high-performance computing. For developers of parallel programming models, implementing support for GPU-aware communication using native APIs for GPUs such as CUDA can be a daunting task as it requires considerable effort with little guarantee of performance. In this work, we demonstrate the capability of the Unified Communication X (UCX) framework to compose a GPU-aware communication layer that serves multiple parallel programming models of the Charm++ ecosystem: Charm++, Adaptive MPI (AMPI), and Charm4py. We demonstrate the performance impact of our designs with microbenchmarks adapted from the OSU benchmark suite, obtaining improvements in latency of up to 10.2x, 11.7x, and 17.4x in Charm++, AMPI, and Charm4py, respectively. We also observe increases in bandwidth of up to 9.6x in Charm++, 10x in AMPI, and 10.5x in Charm4py. We show the potential impact of our designs on real-world applications by evaluating a proxy application for the Jacobi iterative method, improving the communication performance by up to 12.4x in Charm++, 12.8x in AMPI, and 19.7x in Charm4py.
High-level programming languages such as Python are increasingly used to provide intuitive interfaces to libraries written in lower-level languages and for assembling applications from various components. This migration towards orchestration rather t
In this paper we present the Task-Aware MPI library (TAMPI) that integrates both blocking and non-blocking MPI primitives with task-based programming models. The TAMPI library leverages two new runtime APIs to improve both programmability and perform
Due to the increasing size of HPC machines, the fault presence is becoming an eventuality that applications must face. Natively, MPI provides no support for the execution past the detection of a fault, and this is becoming more and more constraining.
Analytic, first-principles performance modeling of distributed-memory parallel codes is notoriously imprecise. Even for applications with extremely regular and homogeneous compute-communicate phases, simply adding communication time to computation ti
We investigate a parallelization strategy for dense matrix factorization (DMF) algorithms, using OpenMP, that departs from the legacy (or conventional) solution, which simply extracts concurrency from a multithreaded version of BLAS. This approach is