ﻻ يوجد ملخص باللغة العربية
The current manuscript highlights the preparation of NiFe2O4 nanoparticles by adopting sol-gel auto combustion route. The prime focus of this study is to investigate the impact of gamma irradiation on the microstructural, morphological, functional, optical and magnetic characteristics. The resulted NiFe2O4 products have been characterized employing numerous instrumental equipments such as FESEM, XRD, UV visible spectroscopy, FTIR and PPMS for a variety of gamma ray doses (0 kGy, 25 kGy and 100 kGy). FESEM micrographs illustrate the aggregation of ferrite nanoparticles in pristine NiFe2O4 product having an average particle size of 168 nm and the surface morphology is altered after exposure to gamma-irradiation. XRD spectra have been analyzed employing Rietveld method and the results of the XRD investigation reveal the desired phases (cubic spinel phases) of NiFe2O4 with observing other transitional phases. Several microstructural parameters such as bond length, bond angle, hopping length etc. have been determined from the analysis of Rietveld method. This study reports that the gamma irradiations demonstrate a great influence on optical bandgap energy and it varies from 1.80 and 1.89 eV evaluated via K M function. FTIR measurement depicts a proof for the persistence of Ni-O and Fe-O stretching vibrations within the respective products and thus indicating the successful development of NiFe2O4. The saturation magnetization (MS) of pristine Ni ferrite product is noticed to be 28.08 emug-1. A considerable increase in MS is observed in case of low gamma-dose (25 kGy) and a decrement nature is disclosed after the result of high dose of gamma irradiation (100kGy).
We present a comprehensive structural characterization of ferromagnetic SiC single crystals induced by Ne ion irradiation. The ferromagnetism has been confirmed by electron spin resonance and possible transition metal impurities can be excluded to be
Nanocrystalline ribbons of inverse Heusler alloy Mn2Ni1.6Sn0.4 have been synthesised by melt spinning of the arc melted bulk precursor. The single phase ribbons crystallize into a cubic structure and exhibit very fine crystallite size of < 2 nm. Temp
In this work we analyse the role of a thin Cr spacer between Fe and Gd layers on structure and magnetic properties of a [Fe(35A)/Cr(tCr)/Gd(50A)/Cr(tCr)]x12 superlattice. Samples without the Cr spacer (tCr=0) and with a thin tCr=4A are investigated u
Nanostructured La0.67Ca0.33MnO3 (NS-LCMO) was formed by pulsed-laser deposition on the surface of porous Al2O3. The resistance peak temperature (Tp) of the NS-LCMO increases with increasing average thickness of the films, while their Curie temperatur
Structural and electronic properties of the alpha- and gamma-phases of cerium sesquisulfide, Ce2S3, are examined by first-principles calculations using the GGA+U extension of density functional theory. The strongly correlated f-electrons of Ce are de