ﻻ يوجد ملخص باللغة العربية
In 2001, Leo Breiman wrote of a divide between data modeling and algorithmic modeling cultures. Twenty years later this division feels far more ephemeral, both in terms of assigning individuals to camps, and in terms of intellectual boundaries. We argue that this is largely due to the data modelers incorporating algorithmic methods into their toolbox, particularly driven by recent developments in the statistical understanding of Breimans own Random Forest methods. While this can be simplistically described as Breiman won, these same developments also expose the limitations of the prediction-first philosophy that he espoused, making careful statistical analysis all the more important. This paper outlines these exciting recent developments in the random forest literature which, in our view, occurred as a result of a necessary blending of the two ways of thinking Breiman originally described. We also ask what areas statistics and statisticians might currently overlook.
Decision-making systems increasingly orchestrate our world: how to intervene on the algorithmic components to build fair and equitable systems is therefore a question of utmost importance; one that is substantially complicated by the context-dependen
Our goal is to learn a semantic parser that maps natural language utterances into executable programs when only indirect supervision is available: examples are labeled with the correct execution result, but not the program itself. Consequently, we mu
Breiman challenged statisticians to think more broadly, to step into the unknown, model-free learning world, with him paving the way forward. Statistics community responded with slight optimism, some skepticism, and plenty of disbelief. Today, we are
The role of probability appears unchallenged as the key measure of uncertainty, used among other things for practical induction in the empirical sciences. Yet, Popper was emphatic in his rejection of inductive probability and of the logical probabili
Breimans classic paper casts data analysis as a choice between two cultures: data modelers and algorithmic modelers. Stated broadly, data modelers use simple, interpretable models with well-understood theoretical properties to analyze data. Algorithm