ﻻ يوجد ملخص باللغة العربية
For machine agents to successfully interact with humans in real-world settings, they will need to develop an understanding of human mental life. Intuitive psychology, the ability to reason about hidden mental variables that drive observable actions, comes naturally to people: even pre-verbal infants can tell agents from objects, expecting agents to act efficiently to achieve goals given constraints. Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning. Inspired by cognitive development studies on intuitive psychology, we present a benchmark consisting of a large dataset of procedurally generated 3D animations, AGENT (Action, Goal, Efficiency, coNstraint, uTility), structured around four scenarios (goal preferences, action efficiency, unobserved constraints, and cost-reward trade-offs) that probe key concepts of core intuitive psychology. We validate AGENT with human-ratings, propose an evaluation protocol emphasizing generalization, and compare two strong baselines built on Bayesian inverse planning and a Theory of Mind neural network. Our results suggest that to pass the designed tests of core intuitive psychology at human levels, a model must acquire or have built-in representations of how agents plan, combining utility computations and core knowledge of objects and physics.
Humans have an inherent ability to learn novel concepts from only a few samples and generalize these concepts to different situations. Even though todays machine learning models excel with a plethora of training data on standard recognition tasks, a
In order to reach human performance on complexvisual tasks, artificial systems need to incorporate a sig-nificant amount of understanding of the world in termsof macroscopic objects, movements, forces, etc. Inspiredby work on intuitive physics in inf
Humans are well-versed in reasoning about the behaviors of physical objects when choosing actions to accomplish tasks, while it remains a major challenge for AI. To facilitate research addressing this problem, we propose a new benchmark that requires
Reasoning about the behaviour of physical objects is a key capability of agents operating in physical worlds. Humans are very experienced in physical reasoning while it remains a major challenge for AI. To facilitate research addressing this problem,
Predicting accurate future trajectories of multiple agents is essential for autonomous systems, but is challenging due to the complex agent interaction and the uncertainty in each agents future behavior. Forecasting multi-agent trajectories requires