ﻻ يوجد ملخص باللغة العربية
Single image dehazing is a challenging ill-posed problem that has drawn significant attention in the last few years. Recently, convolutional neural networks have achieved great success in image dehazing. However, it is still difficult for these increasingly complex models to recover accurate details from the hazy image. In this paper, we pay attention to the feature extraction and utilization of the input image itself. To achieve this, we propose a Multi-scale Topological Network (MSTN) to fully explore the features at different scales. Meanwhile, we design a Multi-scale Feature Fusion Module (MFFM) and an Adaptive Feature Selection Module (AFSM) to achieve the selection and fusion of features at different scales, so as to achieve progressive image dehazing. This topological network provides a large number of search paths that enable the network to extract abundant image features as well as strong fault tolerance and robustness. In addition, ASFM and MFFM can adaptively select important features and ignore interference information when fusing different scale representations. Extensive experiments are conducted to demonstrate the superiority of our method compared with state-of-the-art methods.
We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can
Haze degrades content and obscures information of images, which can negatively impact vision-based decision-making in real-time systems. In this paper, we propose an efficient fully convolutional neural network (CNN) image dehazing method designed to
We propose an enhanced multi-scale network, dubbed GridDehazeNet+, for single image dehazing. It consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better div
Hazy images reduce the visibility of the image content, and haze will lead to failure in handling subsequent computer vision tasks. In this paper, we address the problem of image dehazing by proposing a dehazing network named T-Net, which consists of
Single image dehazing, which aims to recover the clear image solely from an input hazy or foggy image, is a challenging ill-posed problem. Analysing existing approaches, the common key step is to estimate the haze density of each pixel. To this end,