ﻻ يوجد ملخص باللغة العربية
In this work we present a class of high order unconditionally strong stability preserving (SSP) implicit multi-derivative Runge--Kutta schemes, and SSP implicit-explicit (IMEX) multi-derivative Runge--Kutta schemes where the time-step restriction is independent of the stiff term. The unconditional SSP property for a method of order $p>2$ is unique among SSP methods, and depends on a backward-in-time assumption on the derivative of the operator. We show that this backward derivative condition is satisfied in many relevant cases where SSP IMEX schemes are desired. We devise unconditionally SSP implicit Runge--Kutta schemes of order up to $p=4$, and IMEX Runge--Kutta schemes of order up to $p=3$. For the multi-derivative IMEX schemes, we also derive and present the order conditions, which have not appeared previously. The unconditional SSP condition ensures that these methods are positivity preserving, and we present sufficient conditions under which such methods are also asymptotic preserving when applied to a range of problems, including a hyperbolic relaxation system, the Broadwell model, and the Bhatnagar-Gross-Krook (BGK) kinetic equation. We present numerical results to support the theoretical results, on a variety of problems.
When evolving in time the solution of a hyperbolic partial differential equation, it is often desirable to use high order strong stability preserving (SSP) time discretizations. These time discretizations preserve the monotonicity properties satisfie
Strong stability preserving (SSP) Runge-Kutta methods are often desired when evolving in time problems that have two components that have very different time scales. Where the SSP property is needed, it has been shown that implicit and implicit-expli
High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high
Problems that feature significantly different time scales, where the stiff time-step restriction comes from a linear component, implicit-explicit (IMEX) methods alleviate this restriction if the concern is linear stability. However, where the SSP pro
It is well-known that a numerical method which is at the same time geometric structure-preserving and physical property-preserving cannot exist in general for Hamiltonian partial differential equations. In this paper, we present a novel class of para