The first computation of the compressible energy transfer rate from $sim$ 0.2 AU up to $sim$ 1.7 AU is obtained using PSP, THEMIS and MAVEN observations. The compressible energy cascade rate $varepsilon_C$ is computed for hundred of events at different heliocentric distances, for time intervals when the spacecraft were in the pristine solar wind. The observational results show moderate increases of $varepsilon_C$ with respect to the incompressible cascade rate $varepsilon_I$. Depending on the level of compressibility in the plasma, which reach up to 25 $%$ in the PSP perihelion, the different terms in the compressible exact relation are shown to have different impact in the total cascade rate $varepsilon_C$. Finally, the observational results are connected with the local ion temperature and the solar wind heating problem.