ﻻ يوجد ملخص باللغة العربية
Getting good speedup -- let alone high parallel efficiency -- for parallel-in-time (PinT) integration examples can be frustratingly difficult. The high complexity and large number of parameters in PinT methods can easily (and unintentionally) lead to numerical experiments that overestimate the algorithms performance. In the tradition of Baileys article Twelve ways to fool the masses when giving performance results on parallel computers, we discuss and demonstrate pitfalls to avoid when evaluating performance of PinT methods. Despite being written in a light-hearted tone, this paper is intended to raise awareness that there are many ways to unintentionally fool yourself and others and that by avoiding these fallacies more meaningful PinT performance results can be obtained.
The Lorentz equations describe the motion of electrically charged particles in electric and magnetic fields and are used widely in plasma physics. The most popular numerical algorithm for solving them is the Boris method, a variant of the Stormer-Ver
We present a novel approach which aims at high-performance uncertainty quantification for cardiac electrophysiology simulations. Employing the monodomain equation to model the transmembrane potential inside the cardiac cells, we evaluate the effect o
It is well known that domain-decomposition-based multiscale mixed methods rely on interface spaces, defined on the skeleton of the decomposition, to connect the solution among the non-overlapping subdomains. Usual spaces, such as polynomial-based one
Notched components are commonly used in engineering structures, where stress concentration may easily lead to crack initiation and development. The main goal of this work is to develop a simple numerical method to predict the structural strength and
In this paper, a new finite element (FE) model using ABAQUS software was developed to investigate the compressive behavior of Concrete-Filled Steel Circular-Tube (CFSCT) columns. Experimental studies indicated that the confinement offered by the circ