ﻻ يوجد ملخص باللغة العربية
Knowledge distillation refers to a technique of transferring the knowledge from a large learned model or an ensemble of learned models to a small model. This method relies on access to the original training set, which might not always be available. A possible solution is a data-free adversarial distillation framework, which deploys a generative network to transfer the teacher models knowledge to the student model. However, the data generation efficiency is low in the data-free adversarial distillation. We add an activation regularizer and a virtual interpolation method to improve the data generation efficiency. The activation regularizer enables the students to match the teachers predictions close to activation boundaries and decision boundaries. The virtual interpolation method can generate virtual samples and labels in-between decision boundaries. Our experiments show that our approach surpasses state-of-the-art data-free distillation methods. The student model can achieve 95.42% accuracy on CIFAR-10 and 77.05% accuracy on CIFAR-100 without any original training data. Our models accuracy is 13.8% higher than the state-of-the-art data-free method on CIFAR-100.
Knowledge Distillation (KD) has made remarkable progress in the last few years and become a popular paradigm for model compression and knowledge transfer. However, almost all existing KD algorithms are data-driven, i.e., relying on a large amount of
Large pre-trained transformer-based language models have achieved impressive results on a wide range of NLP tasks. In the past few years, Knowledge Distillation(KD) has become a popular paradigm to compress a computationally expensive model to a reso
Class labels have been empirically shown useful in improving the sample quality of generative adversarial nets (GANs). In this paper, we mathematically study the properties of the current variants of GANs that make use of class label information. Wit
Recent researches have suggested that the predictive accuracy of neural network may contend with its adversarial robustness. This presents challenges in designing effective regularization schemes that also provide strong adversarial robustness. Revis
Knowledge distillation is one of the most popular and effective techniques for knowledge transfer, model compression and semi-supervised learning. Most existing distillation approaches require the access to original or augmented training samples. But