ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-Path Modeling for Long Recording Speech Separation in Meetings

95   0   0.0 ( 0 )
 نشر من قبل Chenda Li
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The continuous speech separation (CSS) is a task to separate the speech sources from a long, partially overlapped recording, which involves a varying number of speakers. A straightforward extension of conventional utterance-level speech separation to the CSS task is to segment the long recording with a size-fixed window and process each window separately. Though effective, this extension fails to model the long dependency in speech and thus leads to sub-optimum performance. The recent proposed dual-path modeling could be a remedy to this problem, thanks to its capability in jointly modeling the cross-window dependency and the local-window processing. In this work, we further extend the dual-path modeling framework for CSS task. A transformer-based dual-path system is proposed, which integrates transform layers for global modeling. The proposed models are applied to LibriCSS, a real recorded multi-talk dataset, and consistent WER reduction can be observed in the ASR evaluation for separated speech. Also, a dual-path transformer equipped with convolutional layers is proposed. It significantly reduces the computation amount by 30% with better WER evaluation. Furthermore, the online processing dual-path models are investigated, which shows 10% relative WER reduction compared to the baseline.



قيم البحث

اقرأ أيضاً

109 - Cong Han , Yi Luo , Chenda Li 2020
Leveraging additional speaker information to facilitate speech separation has received increasing attention in recent years. Recent research includes extracting target speech by using the target speakers voice snippet and jointly separating all parti cipating speakers by using a pool of additional speaker signals, which is known as speech separation using speaker inventory (SSUSI). However, all these systems ideally assume that the pre-enrolled speaker signals are available and are only evaluated on simple data configurations. In realistic multi-talker conversations, the speech signal contains a large proportion of non-overlapped regions, where we can derive robust speaker embedding of individual talkers. In this work, we adopt the SSUSI model in long recordings and propose a self-informed, clustering-based inventory forming scheme for long recording, where the speaker inventory is fully built from the input signal without the need for external speaker signals. Experiment results on simulated noisy reverberant long recording datasets show that the proposed method can significantly improve the separation performance across various conditions.
Speech separation has been extensively studied to deal with the cocktail party problem in recent years. All related approaches can be divided into two categories: time-frequency domain methods and time domain methods. In addition, some methods try to generate speaker vectors to support source separation. In this study, we propose a new model called dual-path filter network (DPFN). Our model focuses on the post-processing of speech separation to improve speech separation performance. DPFN is composed of two parts: the speaker module and the separation module. First, the speaker module infers the identities of the speakers. Then, the separation module uses the speakers information to extract the voices of individual speakers from the mixture. DPFN constructed based on DPRNN-TasNet is not only superior to DPRNN-TasNet, but also avoids the problem of permutation-invariant training (PIT).
Deep neural network with dual-path bi-directional long short-term memory (BiLSTM) block has been proved to be very effective in sequence modeling, especially in speech separation. This work investigates how to extend dual-path BiLSTM to result in a n ew state-of-the-art approach, called TasTas, for multi-talker monaural speech separation (a.k.a cocktail party problem). TasTas introduces two simple but effective improvements, one is an iterative multi-stage refinement scheme, and the other is to correct the speech with imperfect separation through a loss of speaker identity consistency between the separated speech and original speech, to boost the performance of dual-path BiLSTM based networks. TasTas takes the mixed utterance of two speakers and maps it to two separated utterances, where each utterance contains only one speakers voice. Our experiments on the notable benchmark WSJ0-2mix data corpus result in 20.55dB SDR improvement, 20.35dB SI-SDR improvement, 3.69 of PESQ, and 94.86% of ESTOI, which shows that our proposed networks can lead to big performance improvement on the speaker separation task. We have open sourced our re-implementation of the DPRNN-TasNet here (https://github.com/ShiZiqiang/dual-path-RNNs-DPRNNs-based-speech-separation), and our TasTas is realized based on this implementation of DPRNN-TasNet, it is believed that the results in this paper can be reproduced with ease.
179 - Yi Luo , Zhuo Chen , Cong Han 2020
Modules in all existing speech separation networks can be categorized into single-input-multi-output (SIMO) modules and single-input-single-output (SISO) modules. SIMO modules generate more outputs than input, and SISO modules keep the numbers of inp ut and output the same. While the majority of separation models only contain SIMO architectures, it has also been shown that certain two-stage separation systems integrated with a post-enhancement SISO module can improve the separation quality. Why performance improvements can be achieved by incorporating the SISO modules? Are SIMO modules always necessary? In this paper, we empirically examine those questions by designing models with varying configurations in the SIMO and SISO modules. We show that comparing with the standard SIMO-only design, a mixed SIMO-SISO design with a same model size is able to improve the separation performance especially under low-overlap conditions. We further validate the necessity of SIMO modules and show that SISO-only models are still able to perform separation without sacrificing the performance. The observations allow us to rethink the model design paradigm and present different views on how the separation is performed.
Target speech separation refers to extracting a target speakers voice from an overlapped audio of simultaneous talkers. Previously the use of visual modality for target speech separation has demonstrated great potentials. This work proposes a general multi-modal framework for target speech separation by utilizing all the available information of the target speaker, including his/her spatial location, voice characteristics and lip movements. Also, under this framework, we investigate on the fusion methods for multi-modal joint modeling. A factorized attention-based fusion method is proposed to aggregate the high-level semantic information of multi-modalities at embedding level. This method firstly factorizes the mixture audio into a set of acoustic subspaces, then leverages the targets information from other modalities to enhance these subspace acoustic embeddings with a learnable attention scheme. To validate the robustness of proposed multi-modal separation model in practical scenarios, the system was evaluated under the condition that one of the modalities is temporarily missing, invalid or corrupted. Experiments are conducted on a large-scale audio-visual dataset collected from YouTube (to be released) that spatialized by simulated room impulse responses (RIRs). Experiment results illustrate that our proposed multi-modal framework significantly outperforms single-modal and bi-modal speech separation approaches, while can still support real-time processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا