ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass production and characterization of 3-inch PMTs for the JUNO experiment

81   0   0.0 ( 0 )
 نشر من قبل Jilei Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

26,000 3-inch photomultiplier tubes (PMTs) have been produced for Jiangmen Underground Neutrino Observatory (JUNO) by the Hainan Zhanchuang Photonics Technology Co., Ltd (HZC) company in China and passed all acceptance tests with only 15 tubes rejected. The mass production began in 2018 and elapsed for about 2 years at a rate of $sim$1,000~PMTs per month. The characterization of the PMTs was performed in the factory concurrently with production as a joint effort between HZC and JUNO. Fifteen performance parameters were tracked at different sampling rates, and novel working strategies were implemented to improve quality assurance. This constitutes the largest sample of 3-inch PMTs ever produced and studied in detail to date.



قيم البحث

اقرأ أيضاً

The main goal of the JUNO experiment is the determination of the neutrino mass ordering. To achieve this, an extraordinary energy resolution of at least $3,%$ at $1,$MeV is required for which all parts of the JUNO detector need to meet certain qualit y criteria. This is relevant in particular for those which are related to the energy resolution of the detector, such as the photomultiplier tubes (PMTs) to be deployed in JUNO. This paper presents the setup and performance of a dedicated PMT mass testing facility to examine and characterize the performance of the 20-inch JUNO PMTs. Its quasi-industrial size and operation level allows to test all 20000 PMTs intended to be used in the JUNO experiment. With this PMT mass testing system, several key characteristics like dark count rate, peak-to-valley ratio, photon detection efficiency, and timing resolution have been determined at an operating gain of $1times10^7$ and assessed with respect to the requirements of JUNO. Measurement conditions and modes for the PMTs as well as estimated accuracies for the determination of the individual PMT parameters with the system are presented as well.
Jiangmen Underground neutrino Observatory (JUNO) is a next generation liquid scintillator neutrino experiment under construction phase in South China. Thanks to the anti-neutrinos produced by the nearby nuclear power plants, JUNO will primarily study the neutrino mass hierarchy, one of the open key questions in neutrino physics. One key ingredient for the success of the measurement is to use high speed, high resolution sampling electronics located very close to the detector signal. Linearity in the response of the electronics in another important ingredient for the success of the experiment. During the initial design phase of the electronics, a custom design, with the Front-End and Read-Out electronics located very close to the detector analog signal has been developed and successfully tested. The present paper describes the electronics structure and the first tests performed on the prototypes. The electronics prototypes have been tested and they show good linearity response, with a maximum deviation of 1.3% over the full dynamic range (1-1000 p.e.), fulfilling the JUNO experiment requirements.
JUNO is a 20-kton liquid scintillator detector aiming to determine the neutrino mass ordering, precisely measure the oscillation parameters, detect the astrophysical neutrinos and search for exotic physics. It is designed to reach an energy resolutio n of 3% at 1 MeV with the highest ever PMT coverage, using two types of 20 inch phototubes: MCP-PMT from NNVT and dynode-PMT from Hamamatsu. In this article, the gain and charge response of the MCP and dynode PMTs are investigated with the study of JUNO Central Detector prototype. The linearity of the MCP-PMT charge output is measured too to check the effect of a long tail on its charge spectrum.
During the commissioning of the first of the two detectors of the Double Chooz experiment, an unexpected and dominant background caused by the emission of light inside the optical volume has been observed. A specific study of the ensemble of phenomen a called Light Noise has been carried out in-situ, and in an external laboratory, in order to characterize the signals and to identify the possible processes underlying the effect. Some mechanisms of instrumental noise originating from the PMTs were identified and it has been found that the leading one arises from the light emission localized on the photomultiplier base and produced by the combined effect of heat and high voltage across the transparent epoxy resin covering the electric components. The correlation of the rate and the amplitude of the signal with the temperature has been observed. For the first detector in operation the induced background has been mitigated using online and offline analysis selections based on timing and light pattern of the signals, while a modification of the photomultiplier assembly has been implemented for the second detector in order to blacken the PMT bases.
132 - Agnese Giaz 2018
The determination of the neutrino mass hierarchy, whether the $ u _3$ neutrino mass eigenstate is heavier or lighter than the $ u _1$ and $ u _2$ mass eigenstates, is one of the remaining undetermined fundamental aspects of the Standard Model in the lepton sector. Furthermore the mass hierarchy determination will have an impact in the quest of the neutrino nature (Dirac or Majorana mass terms) towards the formulation of a theory of flavour. The Jiangmen Underground Neutrino Observatory (JUNO) is a reactor neutrino experiment under construction at Kaiping, Jiangmen in Southern China composed by a large liquid scintillator detector (sphere of 35.4 m of diameter) surronding by 18000 large PMTs and 25000 small PMTs, a water cherenkov detector and a top tracker detector. The large active mass (20 kton) and the unprecedented energy resolution (3% at 1 MeV) will allow to determine the neutrino mass hierarchy with good sensitivity and to precisely measure the neutrino mixing parameters, $theta _{12}$, $Delta m^2_{21} $, and $Delta m^2_{ee}$ below the 1% level. Moreover, a large liquid scintillator detector will allow to explore physics beyond mass hierarchy determination, in particular on many oyher topics such as in astroparticle physics, like supernova burst and diffuse supernova neutrinos, solar neutrinos, atmospheric neutrinos, geo-neutrinos, nucleon decay, indirect dark matter searches and a number of additional exotic searches. In this work the status and the perspectives of the JUNO experiment will be described, focusing also on the main physics aims and the other possible physics cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا