ﻻ يوجد ملخص باللغة العربية
An exciting development in the field of correlated systems is the possibility of realizing two-dimensional (2D) phases of quantum matter. For a systems of bosons, an example of strong correlations manifesting themselves in a 2D environment is provided by helium adsorbed on graphene. We construct the effective Bose-Hubbard model for this system which involves hard-core bosons $(Uapproxinfty)$, repulsive nearest-neighbor $(V>0)$ and small attractive $(V<0)$ next-nearest neighbor interactions. The mapping onto the Bose-Hubbard model is accomplished by a variety of many-body techniques which take into account the strong He-He correlations on the scale of the graphene lattice spacing. Unlike the case of dilute ultracold atoms where interactions are effectively point-like, the detailed microscopic form of the short range electrostatic and long range dispersion interactions in the helium-graphene system are crucial for the emergent Bose-Hubbard description. The result places the ground state of the first layer of $^4$He adsorbed on graphene deep in the commensurate solid phase with $1/3$ of the sites on the dual triangular lattice occupied. Because the parameters of the effective Bose-Hubbard model are very sensitive to the exact lattice structure, this opens up an avenue to tune quantum phase transitions in this solid-state system.
Topological states of matter, such as fractional quantum Hall states, are an active field of research due to their exotic excitations. In particular, ultracold atoms in optical lattices provide a highly controllable and adaptable platform to study su
Ever since the first observation of Bose-Einstein condensation in the nineties, ultracold quantum gases have been the subject of intense research, providing a unique tool to understand the behavior of matter governed by the laws of quantum mechanics.
We construct a basis for the many-particle ground states of the positive hopping Bose-Hubbard model on line graphs of finite 2-connected planar bipartite graphs at sufficiently low filling factors. The particles in these states are localized on non-i
We analyze real-time dynamics of the two-dimensional Bose-Hubbard model after a sudden quench starting from the Mott insulator by means of the two-dimensional tensor-network method. Calculated single-particle correlation functions are found to be in
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W,