ﻻ يوجد ملخص باللغة العربية
The entropy produced when a quantum system is driven away from equilibrium can be decomposed in two parts, one related with populations and the other with quantum coherences. The latter is usually based on the so-called relative entropy of coherence, a widely used quantifier in quantum resource theories. In this paper we argue that, despite satisfying fluctuation theorems and having a clear resource-theoretic interpretation, this splitting has shortcomings. First, it predicts that at low temperatures the entropy production will always be dominated by the classical term, irrespective of the quantum nature of the process. Second, for infinitesimal quenches, the radius of convergence diverges exponentially as the temperature decreases, rendering the functions non-analytic. Motivated by this, we provide here a complementary approach, where the entropy production is split in a way such that the contributions from populations and coherences are written in terms of a thermal state of a specially dephased Hamiltonian. The physical interpretation of our proposal is discussed in detail. We also contrast the two approaches by studying work protocols in a transverse field Ising chain, and a macrospin of varying dimension.
The entropy production in dissipative processes is the essence of the arrow of time and the second law of thermodynamics. For dissipation of quantum systems, it was recently shown that the entropy production contains indeed two contributions: a class
We study the relationship between (non-)Markovian evolutions, established correlations, and the entropy production rate. We consider a system qubit in contact with a thermal bath and in addition the system is strongly coupled to an ancillary qubit. W
The theory of entropy production in nonequilibrium, Hamiltonian systems, previously described for steady states using partitions of phase space, is here extended to time dependent systems relaxing to equilibrium. We illustrate the main ideas by using
We develop a martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponen
Employing the stochastic wave function method, we study quantum features of stochastic entropy production in nonequilibrium processes of open systems. It is demonstarted that continuous measurements on the environment introduce an additional, non-the