ﻻ يوجد ملخص باللغة العربية
In this review article, we first discuss a possible regularization of the big bang curvature singularity of the standard Friedmann cosmology, where the curvature singularity is replaced by a spacetime defect. We then consider the hypothesis that a new physics phase gave rise to this particular spacetime defect. Specifically, we set out on an explorative calculation using the IIB matrix model, which has been proposed as a particular formulation of nonperturbative superstring theory (M-theory).
We study M-theory compactification on ${mathbb{T}^7/ mathbb{Z}_2^3}$ in the presence of a seven-flux, metric fluxes and KK monopoles. The effective four-dimensional supergravity has seven chiral multiplets whose couplings are specified by the $G_2$-s
There are many theories of quantum gravity, depending on asymptotic boundary conditions, and the amount of supersymmetry. The cosmological constant is one of the fundamental parameters that characterize different theories. If it is positive, supersym
In this contribution we go through the developments that in the years 1968 to 1974 led from the Veneziano model to the bosonic string.
We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called
We specify the semiclassical no-boundary wave function of the universe without relying on a functional integral of any kind. The wave function is given as a sum of specific saddle points of the dynamical theory that satisfy conditions of regularity o