ﻻ يوجد ملخص باللغة العربية
Experimental and theoretical studies of fluctuations in nucleus-nucleus interactions at high energies have started to play a major role in understanding of the concept of strong interactions. The elaborated procedures have been developed to disentangle different processes happening during nucleus-nucleus collisions. The fluctuations caused by a variation of the number of nucleons which participated in a collision are frequently considered the unwanted one. The methods to eliminate these fluctuations in fixed-target experiments are reviewed and tested. They can be of key importance in the following ongoing fixed-target heavy-ion experiments: NA61/SHINE at the CERN SPS, STAR-FT at the BNL RHIC, BM@N at JINR Nuclotron, HADES at the GSI SIS18 and in future experiments such as NA60+ at the CERN SPS, CBM at the FAIR SIS100, JHITS at J-PARC-HI MR.
By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments ever and to study $pp$, $p$d and $p$A collisions at $sqrt{s_{NN}}=
A significant number of high power proton beams are available or will go online in the near future. This provides exciting opportunities for new fixed target experiments and the search for new physics in particular. In this note we will survey these
In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coan
AFTER@LHC is an ambitious fixed-target project in order to address open questions in the domain of proton and neutron spins, Quark Gluon Plasma and high-$x$ physics, at the highest energy ever reached in the fixed-target mode. Indeed, thanks to the h
We analyze the sensitivity of fixed-target experiments to sub-GeV thermal relic dark matter models, accounting for variations in both mediator and dark matter mass, and including dark matter production through both on- and off-shell mediators. It is