ﻻ يوجد ملخص باللغة العربية
We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalising flows and incorporate it into our sampler nessai. Nessai is designed for problems where computing the likelihood is computationally expensive and therefore the cost of training a normalising flow is offset by the overall reduction in the number of likelihood evaluations. We validate our sampler on 128 simulated gravitational wave signals from compact binary coalescence and show that it produces unbiased estimates of the system parameters. Subsequently, we compare our results to those obtained with dynesty and find good agreement between the computed log-evidences whilst requiring 2.07 times fewer likelihood evaluations. We also highlight how the likelihood evaluation can be parallelised in nessai without any modifications to the algorithm. Finally, we outline diagnostics included in nessai and how these can be used to tune the samplers settings.
A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal mode
Gravitational wave data from ground-based detectors is dominated by instrument noise. Signals will be comparatively weak, and our understanding of the noise will influence detection confidence and signal characterization. Mis-modeled noise can produc
Roughly every 2-10 minutes, a pair of stellar mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest
Third-generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high si
We discuss the detection of gravitational-wave backgrounds in the context of Bayesian inference and suggest a practical definition of what it means for a signal to be considered stochastic---namely, that the Bayesian evidence favors a stochastic sign