ﻻ يوجد ملخص باللغة العربية
The global gravitational-wave detector network achieves higher detection rates, better parameter estimates, and more accurate sky localisation, as the number of detectors, $mathcal{I}$ increases. This paper quantifies network performance as a function of $mathcal{I}$ for BayesWave, a source-agnostic, wavelet-based, Bayesian algorithm which distinguishes between true astrophysical signals and instrumental glitches. Detection confidence is quantified using the signal-to-glitch Bayes factor, $mathcal{B}_{mathcal{S},mathcal{G}}$. An analytic scaling is derived for $mathcal{B}_{mathcal{S},mathcal{G}}$ versus $mathcal{I}$, the number of wavelets, and the network signal-to-noise ratio, SNR$_text{net}$, which is confirmed empirically via injections into detector noise of the Hanford-Livingston (HL), Hanford-Livingston-Virgo (HLV), and Hanford-Livingston-KAGRA-Virgo (HLKV) networks at projected sensitivities for the fourth observing run (O4). The empirical and analytic scalings are consistent; $mathcal{B}_{mathcal{S},mathcal{G}}$ increases with $mathcal{I}$. The accuracy of waveform reconstruction is quantified using the overlap between injected and recovered waveform, $mathcal{O}_text{net}$. The HLV and HLKV network recovers $87%$ and $86%$ of the injected waveforms with $mathcal{O}_text{net}>0.8$ respectively, compared to $81%$ with the HL network. The accuracy of BayesWave sky localisation is $approx 10$ times better for the HLV network than the HL network, as measured by the search area, $mathcal{A}$, and the sky areas contained within $50%$ and $90%$ confidence intervals. Marginal improvement in sky localisation is also observed with the addition of KAGRA.
We describe updates and improvements to the BayesWave gravitational wave transient analysis pipeline, and provide examples of how the algorithm is used to analyze data from ground-based gravitational wave detectors. BayesWave models gravitational wav
We provide a comprehensive multi-aspect study on the performance of a pipeline used by the LIGO-Virgo Collaboration for estimating parameters of gravitational-wave bursts. We add simulated signals with four different morphologies (sine-Gaussians, Gau
Autonomous gravitational-wave searches -- fully automated analyses of data that run without human intervention or assistance -- are desirable for a number of reasons. They are necessary for the rapid identification of gravitational-wave burst candida
A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal mode
The multi-band template analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences. MBTA runs with a low computational cost, and can identify candidate GW eve