ﻻ يوجد ملخص باللغة العربية
Deep learning technology promotes the rapid development of person re-identifica-tion (re-ID). However, some challenges are still existing in the open-world. First, the existing re-ID research usually assumes only one factor variable (view, clothing, pedestrian pose, pedestrian occlusion, image resolution, RGB/IR modality) changing, ignoring the complexity of multi-factor variables in the open-world. Second, the existing re-ID methods are over depend on clothing color and other apparent features of pedestrian, which are easily disguised or changed. In addition, the lack of benchmark datasets containing multi-factor variables is also hindering the practically application of re-ID in the open-world. In this paper, we propose a low-cost and high-efficiency method to solve shortcomings of the existing re-ID research, such as unreliable feature selection, low efficiency of feature extraction, single research variable, etc. Our approach based on pose estimation model improved by group convolution to obtain the continuous key points of pedestrian, and utilize dynamic time warping (DTW) to measure the similarity of features between different pedestrians. At the same time, to verify the effectiveness of our method, we provide a miniature dataset which is closer to the real world and includes pedestrian changing clothes and cross-modality factor variables fusion. Extensive experiments are conducted and the results show that our method achieves Rank-1: 60.9%, Rank-5: 78.1%, and mAP: 49.2% on this dataset, which exceeds most existing state-of-art re-ID models.
Person re-identification (Re-ID) in real-world scenarios usually suffers from various degradation factors, e.g., low-resolution, weak illumination, blurring and adverse weather. On the one hand, these degradations lead to severe discriminative inform
Most existing person re-identification (re-id) models focus on matching still person images across disjoint camera views. Since only limited information can be exploited from still images, it is hard (if not impossible) to overcome the occlusion, pos
Most state-of-the-art person re-identification (re-id) methods depend on supervised model learning with a large set of cross-view identity labelled training data. Even worse, such trained models are limited to only the same-domain deployment with sig
Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from t
Fast person re-identification (ReID) aims to search person images quickly and accurately. The main idea of recent fast ReID methods is the hashing algorithm, which learns compact binary codes and performs fast Hamming distance and counting sort. Howe