ﻻ يوجد ملخص باللغة العربية
Item-based collaborative filtering (ICF) enjoys the advantages of high recommendation accuracy and ease in online penalization and thus is favored by the industrial recommender systems. ICF recommends items to a target user based on their similarities to the previously interacted items of the user. Great progresses have been achieved for ICF in recent years by applying advanced machine learning techniques (e.g., deep neural networks) to learn the item similarity from data. The early methods simply treat all the historical items equally and recent ones distinguish the different importance of items for a prediction. Despite the progress, we argue that those ICF models neglect the diverse intents of users on adopting items (e.g., watching a movie because of the director, leading actors, or the visual effects). As a result, they fail to estimate the item similarity on a finer-grained level to predict the users preference for an item, resulting in sub-optimal recommendation. In this work, we propose a general factor-level attention method for ICF models. The key of our method is to distinguish the importance of different factors when computing the item similarity for a prediction. To demonstrate the effectiveness of our method, we design a light attention neural network to integrate both item-level and factor-level attention for neural ICF models. It is model-agnostic and easy-to-implement. We apply it to two baseline ICF models and evaluate its effectiveness on six public datasets. Extensive experiments show the factor-level attention enhanced models consistently outperform their counterparts, demonstrating the potential of differentiate user intents on the factor-level for ICF recommendation models.
Modern deep neural networks (DNNs) have greatly facilitated the development of sequential recommender systems by achieving state-of-the-art recommendation performance on various sequential recommendation tasks. Given a sequence of interacted items, e
Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (calle
As important side information, attributes have been widely exploited in the existing recommender system for better performance. In the real-world scenarios, it is common that some attributes of items/users are missing (e.g., some movies miss the genr
To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in cu
Using reviews to learn user and item representations is important for recommender system. Current review based methods can be divided into two categories: (1) the Convolution Neural Network (CNN) based models that extract n-gram features from user/it