ﻻ يوجد ملخص باللغة العربية
Every maximally monotone operator can be associated with a family of convex functions, called the Fitzpatrick family or family of representative functions. Surprisingly, in 2017, Burachik and Martinez-Legaz showed that the well-known Bregman distance is a particular case of a general family of distances, each one induced by a specific maximally monotone operator and a specific choice of one of its representative functions. For the family of generalized Bregman distances, sufficient conditions for convexity, coercivity, and supercoercivity have recently been furnished. Motivated by these advances, we introduce in the present paper the generalized left and right envelopes and proximity operators, and we provide asymptotic results for parameters. Certain results extend readily from the more specific Bregman context, while others only extend for certain generalized cases. To illustrate, we construct examples from the Bregman generalizing case, together with the natural extreme cases that highlight the importance of which generalized Bregman distance is chosen.
Recently, a new distance has been introduced for the graphs of two point-to-set operators, one of which is maximally monotone. When both operators are the subdifferential of a proper lower semicontinuous convex function, this distance specializes und
The transfer property for the generalized Browders theorem both of the tensor product and of the left-right multiplication operator will be characterized in terms of the $B$-Weyl spectrum inclusion. In addition, the isolated points of these two classes of operators will be fully characterized.
In a recent paper in Journal of Convex Analysis the authors studied, in non-reflexive Banach spaces, a class of maximal monotone operators, characterized by the existence of a function in Fitzpatricks family of the operator which conjugate is above t
Let $displaystyle L = -frac{1}{w} , mathrm{div}(A , abla u) + mu$ be the generalized degenerate Schrodinger operator in $L^2_w(mathbb{R}^d)$ with $dge 3$ with suitable weight $w$ and measure $mu$. The main aim of this paper is threefold. First, we o
The main objective of this work is to study generalized Browders and Weyls theorems for the multiplication operators $L_A$ and $R_B$ and for the elementary operator $tau_{A,B}=L_AR_B$.