ﻻ يوجد ملخص باللغة العربية
Multi-lepton anomalies at the Large Hadron Collider are reasonably well described by a two Higgs doublet model with an additional singlet scalar. Here, we demonstrate that using this model, with parameters set by the LHC, we are also able to describe the excesses in gamma-ray flux from the galactic centre and the cosmic-ray spectra from AMS-02. This is achieved through Dark Matter (DM) annihilation via the singlet scalar. Of great interest is the flux of synchrotron emissions which results from annihilation of DM in Milky-Way satellites. We make predictions for MeerKAT observations of the nearby dwarf galaxy Reticulum~II and we demonstrate the power of this instrument as a new frontier in indirect dark matter searches. Since the dark matter sector of the aforementioned two Higgs doublet model is unconstrained by LHC data, we also demonstrate a synergy between particle and astrophysical searches in order to motivate further exploration of this promising model.
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is a NASA Astrophysics probe-class mission designed to observe ultra-high energy cosmic rays (UHECRs) and cosmic neutrinos from space. Astro2020 APC white paper: Medium-class Space Particle Astrophysics Project.
A recent study [1] has shown that a simplified model predicting a heavy scalar of mass 270 GeV ($H$) that decays to a Standard Model (SM) Higgs boson in association with a scalar singlet of mass 150 GeV ($S$) can accommodate several anomalous multi-l
The future Facility for Antiproton and Ion Research (FAIR) is an accelerator-based international center for fundamental and applied research, which presently is under construction in Darmstadt, Germany. An important part of the program is devoted to
Recent work highlights that tens of Galactic double neutron stars are likely to be detectable in the millihertz band of the space-based gravitational-wave observatory, LISA. Kyutoku and Nishino point out that some of these binaries might be detectabl
The implications of the formation of strange quark matter in neutron stars and in core-collapse supernovae is discussed with special emphasis on the possibility of having a strong first order QCD phase transition at high baryon densities. If strange