ﻻ يوجد ملخص باللغة العربية
Disentangled generative models are typically trained with an extra regularization term, which encourages the traversal of each latent factor to make a distinct and independent change at the cost of generation quality. When traversing the latent space of generative models trained without the disentanglement term, the generated samples show semantically meaningful change, raising the question: do generative models know disentanglement? We propose an unsupervised and model-agnostic method: Disentanglement via Contrast (DisCo) in the Variation Space. DisCo consists of: (i) a Navigator providing traversal directions in the latent space, and (ii) a $Delta$-Contrastor composed of two shared-weight Encoders, which encode image pairs along these directions to disentangled representations respectively, and a difference operator to map the encoded representations to the Variation Space. We propose two more key techniques for DisCo: entropy-based domination loss to make the encoded representations more disentangled and the strategy of flipping hard negatives to address directions with the same semantic meaning. By optimizing the Navigator to discover disentangled directions in the latent space and Encoders to extract disentangled representations from images with Contrastive Learning, DisCo achieves the state-of-the-art disentanglement given pretrained non-disentangled generative models, including GAN, VAE, and Flow. Project page at https://github.com/xrenaa/DisCo.
Concept-based explanations have emerged as a popular way of extracting human-interpretable representations from deep discriminative models. At the same time, the disentanglement learning literature has focused on extracting similar representations in
Region proposal mechanisms are essential for existing deep learning approaches to object detection in images. Although they can generally achieve a good detection performance under normal circumstances, their recall in a scene with extreme cases is u
Disentanglement is defined as the problem of learninga representation that can separate the distinct, informativefactors of variations of data. Learning such a representa-tion may be critical for developing explainable and human-controllable Deep Gen
State-of-the-art deep face recognition methods are mostly trained with a softmax-based multi-class classification framework. Despite being popular and effective, these methods still have a few shortcomings that limit empirical performance. In this pa
Adversarial Training (AT) with Projected Gradient Descent (PGD) is an effective approach for improving the robustness of the deep neural networks. However, PGD AT has been shown to suffer from two main limitations: i) high computational cost, and ii)