ﻻ يوجد ملخص باللغة العربية
With the continued spread of coronavirus, the task of forecasting distinctive COVID-19 growth curves in different cities, which remain inadequately explained by standard epidemiological models, is critical for medical supply and treatment. Predictions must take into account non-pharmaceutical interventions to slow the spread of coronavirus, including stay-at-home orders, social distancing, quarantine and compulsory mask-wearing, leading to reductions in intra-city mobility and viral transmission. Moreover, recent work associating coronavirus with human mobility and detailed movement data suggest the need to consider urban mobility in disease forecasts. Here we show that by incorporating intra-city mobility and policy adoption into a novel metapopulation SEIR model, we can accurately predict complex COVID-19 growth patterns in U.S. cities ($R^2$ = 0.990). Estimated mobility change due to policy interventions is consistent with empirical observation from Apple Mobility Trends Reports (Pearsons R = 0.872), suggesting the utility of model-based predictions where data are limited. Our model also reproduces urban superspreading, where a few neighborhoods account for most secondary infections across urban space, arising from uneven neighborhood populations and heightened intra-city churn in popular neighborhoods. Therefore, our model can facilitate location-aware mobility reduction policy that more effectively mitigates disease transmission at similar social cost. Finally, we demonstrate our model can serve as a fine-grained analytic and simulation framework that informs the design of rational non-pharmaceutical interventions policies.
Social distancing remains an important strategy to combat the COVID-19 pandemic in the United States. However, the impacts of specific state-level policies on mobility and subsequent COVID-19 case trajectories have not been completely quantified. Usi
The transmission of COVID-19 is dependent on social contacts, the rate of which have varied during the pandemic due to mandated and voluntary social distancing. Changes in transmission dynamics eventually affect hospital admissions and we have used t
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587
OBJECTIVES: to describe the first wave of the COVID-19 pandemic with a focus on undetected cases and to evaluate different post-lockdown scenarios. DESIGN: the study introduces a SEIR compartmental model, taking into account the region-specific fract
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa