ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effects of Image Distribution and Task on Adversarial Robustness

113   0   0.0 ( 0 )
 نشر من قبل Owen Kunhardt
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose an adaptation to the area under the curve (AUC) metric to measure the adversarial robustness of a model over a particular $epsilon$-interval $[epsilon_0, epsilon_1]$ (interval of adversarial perturbation strengths) that facilitates unbiased comparisons across models when they have different initial $epsilon_0$ performance. This can be used to determine how adversarially robust a model is to different image distributions or task (or some other variable); and/or to measure how robust a model is comparatively to other models. We used this adversarial robustness metric on models of an MNIST, CIFAR-10, and a Fusion dataset (CIFAR-10 + MNIST) where trained models performed either a digit or object recognition task using a LeNet, ResNet50, or a fully connected network (FullyConnectedNet) architecture and found the following: 1) CIFAR-10 models are inherently less adversarially robust than MNIST models; 2) Both the image distribution and task that a model is trained on can affect the adversarial robustness of the resultant model. 3) Pretraining with a different image distribution and task sometimes carries over the adversarial robustness induced by that image distribution and task in the resultant model; Collectively, our results imply non-trivial differences of the learned representation space of one perceptual system over another given its exposure to different image statistics or tasks (mainly objects vs digits). Moreover, these results hold even when model systems are equalized to have the same level of performance, or when exposed to approximately matched image statistics of fusion images but with different tasks.



قيم البحث

اقرأ أيضاً

We study how robust current ImageNet models are to distribution shifts arising from natural variations in datasets. Most research on robustness focuses on synthetic image perturbations (noise, simulated weather artifacts, adversarial examples, etc.), which leaves open how robustness on synthetic distribution shift relates to distribution shift arising in real data. Informed by an evaluation of 204 ImageNet models in 213 different test conditions, we find that there is often little to no transfer of robustness from current synthetic to natural distribution shift. Moreover, most current techniques provide no robustness to the natural distribution shifts in our testbed. The main exception is training on larger and more diverse datasets, which in multiple cases increases robustness, but is still far from closing the performance gaps. Our results indicate that distribution shifts arising in real data are currently an open research problem. We provide our testbed and data as a resource for future work at https://modestyachts.github.io/imagenet-testbed/ .
We demonstrate that the choice of optimizer, neural network architecture, and regularizer significantly affect the adversarial robustness of linear neural networks, providing guarantees without the need for adversarial training. To this end, we revis it a known result linking maximally robust classifiers and minimum norm solutions, and combine it with recent results on the implicit bias of optimizers. First, we show that, under certain conditions, it is possible to achieve both perfect standard accuracy and a certain degree of robustness, simply by training an overparametrized model using the implicit bias of the optimization. In that regime, there is a direct relationship between the type of the optimizer and the attack to which the model is robust. To the best of our knowledge, this work is the first to study the impact of optimization methods such as sign gradient descent and proximal methods on adversarial robustness. Second, we characterize the robustness of linear convolutional models, showing that they resist attacks subject to a constraint on the Fourier-$ell_infty$ norm. To illustrate these findings we design a novel Fourier-$ell_infty$ attack that finds adversarial examples with controllable frequencies. We evaluate Fourier-$ell_infty$ robustness of adversarially-trained deep CIFAR-10 models from the standard RobustBench benchmark and visualize adversarial perturbations.
The goal of this paper is to analyze an intriguing phenomenon recently discovered in deep networks, namely their instability to adversarial perturbations (Szegedy et. al., 2014). We provide a theoretical framework for analyzing the robustness of clas sifiers to adversarial perturbations, and show fundamental upper bounds on the robustness of classifiers. Specifically, we establish a general upper bound on the robustness of classifiers to adversarial perturbations, and then illustrate the obtained upper bound on the families of linear and quadratic classifiers. In both cases, our upper bound depends on a distinguishability measure that captures the notion of difficulty of the classification task. Our results for both classes imply that in tasks involving small distinguishability, no classifier in the considered set will be robust to adversarial perturbations, even if a good accuracy is achieved. Our theoretical framework moreover suggests that the phenomenon of adversarial instability is due to the low flexibility of classifiers, compared to the difficulty of the classification task (captured by the distinguishability). Moreover, we show the existence of a clear distinction between the robustness of a classifier to random noise and its robustness to adversarial perturbations. Specifically, the former is shown to be larger than the latter by a factor that is proportional to sqrt{d} (with d being the signal dimension) for linear classifiers. This result gives a theoretical explanation for the discrepancy between the two robustness properties in high dimensional problems, which was empirically observed in the context of neural networks. To the best of our knowledge, our results provide the first theoretical work that addresses the phenomenon of adversarial instability recently observed for deep networks. Our analysis is complemented by experimental results on controlled and real-world data.
A convolutional neural network strongly robust to adversarial perturbations at reasonable computational and performance cost has not yet been demonstrated. The primate visual ventral stream seems to be robust to small perturbations in visual stimuli but the underlying mechanisms that give rise to this robust perception are not understood. In this work, we investigate the role of two biologically plausible mechanisms in adversarial robustness. We demonstrate that the non-uniform sampling performed by the primate retina and the presence of multiple receptive fields with a range of receptive field sizes at each eccentricity improve the robustness of neural networks to small adversarial perturbations. We verify that these two mechanisms do not suffer from gradient obfuscation and study their contribution to adversarial robustness through ablation studies.
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on impr oving the generalization ability of UDA models on clean examples without considering the adversarial robustness, which is crucial in real-world applications. Conventional adversarial training methods are not suitable for the adversarial robustness on the unlabeled target domain of UDA since they train models with adversarial examples generated by the supervised loss function. In this work, we leverage intermediate representations learned by multiple robust ImageNet models to improve the robustness of UDA models. Our method works by aligning the features of the UDA model with the robust features learned by ImageNet pre-trained models along with domain adaptation training. It utilizes both labeled and unlabeled domains and instills robustness without any adversarial intervention or label requirement during domain adaptation training. Experimental results show that our method significantly improves adversarial robustness compared to the baseline while keeping clean accuracy on various UDA benchmarks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا