ﻻ يوجد ملخص باللغة العربية
To explore the vulnerability of deep neural networks (DNNs), many attack paradigms have been well studied, such as the poisoning-based backdoor attack in the training stage and the adversarial attack in the inference stage. In this paper, we study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes. Specifically, our goal is to misclassify a specific sample into a target class without any sample modification, while not significantly reduce the prediction accuracy of other samples to ensure the stealthiness. To this end, we formulate this problem as a binary integer programming (BIP), since the parameters are stored as binary bits ($i.e.$, 0 and 1) in the memory. By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem, which can be effectively and efficiently solved using the alternating direction method of multipliers (ADMM) method. Consequently, the flipped critical bits can be easily determined through optimization, rather than using a heuristic strategy. Extensive experiments demonstrate the superiority of our method in attacking DNNs.
Node injection attack on Graph Neural Networks (GNNs) is an emerging and practical attack scenario that the attacker injects malicious nodes rather than modifying original nodes or edges to affect the performance of GNNs. However, existing node injec
We study the realistic potential of conducting backdoor attack against deep neural networks (DNNs) during deployment stage. Specifically, our goal is to design a deployment-stage backdoor attack algorithm that is both threatening and realistically im
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks. In this paper, we focus on the so-called textit{backdoor attack}, which injects
The paper develops a new adversarial attack against deep neural networks (DNN), based on applying bio-inspired design to moving physical objects. To the best of our knowledge, this is the first work to introduce physical attacks with a moving object.
Spatiotemporal forecasting plays an essential role in various applications in intelligent transportation systems (ITS), such as route planning, navigation, and traffic control and management. Deep Spatiotemporal graph neural networks (GNNs), which ca