ﻻ يوجد ملخص باللغة العربية
Neural Architecture Search (NAS) often trains and evaluates a large number of architectures. Recent predictor-based NAS approaches attempt to address such heavy computation costs with two key steps: sampling some architecture-performance pairs and fitting a proxy accuracy predictor. Given limited samples, these predictors, however, are far from accurate to locate top architectures due to the difficulty of fitting the huge search space. This paper reflects on a simple yet crucial question: if our final goal is to find the best architecture, do we really need to model the whole space well?. We propose a paradigm shift from fitting the whole architecture space using one strong predictor, to progressively fitting a search path towards the high-performance sub-space through a set of weaker predictors. As a key property of the proposed weak predictors, their probabilities of sampling better architectures keep increasing. Hence we only sample a few well-performed architectures guided by the previously learned predictor and estimate a new better weak predictor. This embarrassingly easy framework produces coarse-to-fine iteration to refine the ranking of sampling space gradually. Extensive experiments demonstrate that our method costs fewer samples to find top-performance architectures on NAS-Bench-101 and NAS-Bench-201, as well as achieves the state-of-the-art ImageNet performance on the NASNet search space. In particular, compared to state-of-the-art (SOTA) predictor-based NAS methods, WeakNAS outperforms all of them with notable margins, e.g., requiring at least 7.5x less samples to find global optimal on NAS-Bench-101; and WeakNAS can also absorb them for further performance boost. We further strike the new SOTA result of 81.3% in the ImageNet MobileNet Search Space. The code is available at https://github.com/VITA-Group/WeakNAS.
Neural Architecture Search (NAS) is an exciting new field which promises to be as much as a game-changer as Convolutional Neural Networks were in 2012. Despite many great works leading to substantial improvements on a variety of tasks, comparison bet
Can we automatically design a Convolutional Network (ConvNet) with the highest image classification accuracy under the latency constraint of a mobile device? Neural Architecture Search (NAS) for ConvNet design is a challenging problem due to the comb
Can we reduce the search cost of Neural Architecture Search (NAS) from days down to only few hours? NAS methods automate the design of Convolutional Networks (ConvNets) under hardware constraints and they have emerged as key components of AutoML fram
Can we automatically design a Convolutional Network (ConvNet) with the highest image classification accuracy under the runtime constraint of a mobile device? Neural architecture search (NAS) has revolutionized the design of hardware-efficient ConvNet
Poisoning attacks have emerged as a significant security threat to machine learning (ML) algorithms. It has been demonstrated that adversaries who make small changes to the training set, such as adding specially crafted data points, can hurt the perf