ﻻ يوجد ملخص باللغة العربية
It is important to know the accurate trajectory of a free fall object in fluid (such as a spacecraft), whose motion might be chaotic in many cases. However, it is impossible to accurately predict its chaotic trajectory in a long enough duration by traditional numerical algorithms in double precision. In this paper, we give the accurate predictions of the same problem by a new strategy, namely the Clean Numerical Simulation (CNS). Without loss of generality, a free fall disk in water is considered, whose motion is governed by the Andersen-Pesavento-Wang model. We illustrate that convergent and reliable trajectories of a chaotic free fall disk in a long enough interval of time can be obtained by means of the CNS, but different traditional algorithms in double precision give disparate trajectories. Besides, unlike the traditional algorithms in double precision, the CNS can predict the accurate posture of the free fall disk near the vicinity of the bifurcation point of some physical parameters in a long duration. Therefore, the CNS can provide reliable prediction of chaotic systems in a long enough interval of time.
Dynamical and statistical properties of tracer advection are studied in a family of flows produced by three point-vortices of different signs. A collapse of all three vortices to a single point is then possible. Tracer dynamics is analyzed by numeric
I consider the problem of weakly nonlinear stability of three-dimensional parity-invariant magnetohydrodynamic systems to perturbations, involving large scales. I assume that the MHD state, the stability of which I investigate, does not involve large
We consider the motion of a particle subjected to the constant gravitational field and scattered inelasticaly by hard boundaries which possess the shape of parabola, wedge, and hyperbola. The billiard itself performs oscillations. The linear dependen
The Random Phase and Amplitude Formalism (RPA) has significantly extended the scope of weak turbulence studies. Because RPA does not assume any proximity to the Gaussianity in the wavenumber space, it can predict, for example, how the fluctuation of
All previous experiments in open turbulent flows (e.g. downstream of grids, jet and atmospheric boundary layer) have produced quantitatively consistent values for the scaling exponents of velocity structure functions. The only measurement in closed t