ترغب بنشر مسار تعليمي؟ اضغط هنا

On the spectral radius of graphs without a star forest

97   0   0.0 ( 0 )
 نشر من قبل Xiao-Dong Zhang Prof.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present two sharp upper bounds for the spectral radius of (bipartite) graphs with forbidden a star forest and characterize all extremal graphs. Moreover, the minimum least eigenvalue of the adjacency matrix of graph with forbidden a star forest and all extremal graphs for graphs are obtained.



قيم البحث

اقرأ أيضاً

Let $F_{a_1,dots,a_k}$ be a graph consisting of $k$ cycles of odd length $2a_1+1,dots, 2a_k+1$, respectively which intersect in exactly a common vertex, where $kgeq1$ and $a_1ge a_2ge cdotsge a_kge 1$. In this paper, we present a sharp upper bound fo r the signless Laplacian spectral radius of all $F_{a_1,dots,a_k}$-free graphs and characterize all extremal graphs which attain the bound. The stability methods and structure of graphs associated with the eigenvalue are adapted for the proof.
162 - Chia-an Liu , Chih-wen Weng 2014
Let k, p, q be positive integers with k < p < q+1. We prove that the maximum spectral radius of a simple bipartite graph obtained from the complete bipartite graph Kp,q of bipartition orders p and q by deleting k edges is attained when the deleting e dges are all incident on a common vertex which is located in the partite set of order q. Our method is based on new sharp upper bounds on the spectral radius of bipartite graphs in terms of their degree sequences.
Let $G$ be a simple graph with vertex set $V(G) = {v_1 ,v_2 ,cdots ,v_n}$. The Harary matrix $RD(G)$ of $G$, which is initially called the reciprocal distance matrix, is an $n times n$ matrix whose $(i,j)$-entry is equal to $frac{1}{d_{ij}}$ if $i ot =j$ and $0$ otherwise, where $d_{ij}$ is the distance of $v_i$ and $v_j$ in $G$. In this paper, we characterize graphs with maximum spectral radius of Harary matrix in three classes of simple connected graphs with $n$ vertices: graphs with fixed matching number, bipartite graphs with fixed matching number, and graphs with given number of cut edges, respectively.
Let $G$ denote a bipartite graph with $e$ edges without isolated vertices. It was known that the spectral radius of $G$ is at most the square root of $e$, and the upper bound is attained if and only if $G$ is a complete bipartite graph. Suppose that $G$ is not a complete bipartite graph, and $e-1$ and $e+1$ are not twin primes. We determine the maximal spectral radius of $G$. As a byproduct of our study, we obtain a spectral characterization of a pair $(e-1, e+1)$ of integers to be a pair of twin primes.
103 - V. Nikiforov 2021
Write $rholeft( Gright) $ for the spectral radius of a graph $G$ and $S_{n,r}$ for the join $K_{r}veeoverline{K}_{n-r}.$ Let $n>rgeq2$ and $G$ be a $K_{r+1}$-saturated graph of order $n.$ Recently Kim, Kim, Kostochka, and O determined exactly the minimum value of $rholeft( Gright) $ for $r=2$, and found an asymptotically tight bound on $rholeft( Gright) $ for $rgeq3.$ They also conjectured that [ rholeft( Gright) >rholeft( S_{n,r-1}right) , ] unless $G=S_{n,r-1}.$ In this note their conjecture is proved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا