ﻻ يوجد ملخص باللغة العربية
We study ternary sequences associated with a multidimensional continued fraction algorithm introduced by the first author. The algorithm is defined by two matrices and we show that it is measurably isomorphic to the shift on the set ${1,2}^mathbb{N}$ of directive sequences. For a given set $mathcal{C}$ of two substitutions, we show that there exists a $mathcal{C}$-adic sequence for every vector of letter frequencies or, equivalently, for every directive sequence. We show that their factor complexity is at most $2n+1$ and is $2n+1$ if and only if the letter frequencies are rationally independent if and only if the $mathcal{C}$-adic representation is primitive. It turns out that in this case, the sequences are dendric. We also prove that $mu$-almost every $mathcal{C}$-adic sequence is balanced, where $mu$ is any shift-invariant ergodic Borel probability measure on ${1,2}^mathbb{N}$ giving a positive measure to the cylinder $[12121212]$. We also prove that the second Lyapunov exponent of the matrix cocycle associated with the measure $mu$ is negative.
We study aperiodic balanced sequences over finite alphabets. A sequence v of this type is fully characterised by a Sturmian sequence u and two constant gap sequences y and y. We show that the language of v is eventually dendric and we focus on return
We study the differential properties of higher-order statistical probabilistic programs with recursion and conditioning. Our starting point is an open problem posed by Hongseok Yang: what class of statistical probabilistic programs have densities tha
The autocorrelation and the linear complexity of a key stream sequence in a stream cipher are important cryptographic properties. Many sequences with these good properties have interleaved structure, three classes of binary sequences of period $4N$ w
Let $L$ be a non-negative self-adjoint operator acting on the space $L^2(X)$, where $X$ is a metric measure space. Let ${ L}=int_0^{infty} lambda dE_{ L}({lambda})$ be the spectral resolution of ${ L}$ and $S_R({ L})f=int_0^R dE_{ L}(lambda) f$ denot
We investigate maximal exceptional sequences of line bundles on (P^1)^3, i.e. those consisting of 2^r elements. For r=3 we show that they are always full, meaning that they generate the derived category. Everything is done in the discrete setup: Exce